---
language:
- tr
library_name: transformers
datasets:
- merve/turkish_instructions
pipeline_tag: text-generation
---
# Model Card for Model ID
This model is a fine-tuned version of YTU's Cosmos GPT2 Language Model. You can check the code from here:Fine Tuning Cosmos by LoRA and QLoRA
## Training Details
The model was fine-tuned using LoRA and QLoRA techniques. Training parameters are defined below.
### LoRA configs:
- **r**=16
- **lora_alpha**=32
- **target_modules**=c_proj,c_fc, gate_proj, c_proj, c_attn
- **lora_dropout**=0.05
- **bias**="lora_only"
- **fan_in_fan_out**=True
- **max_seq_length**=512
- **use_rslora**=True
### Train Parameters:
- **train_epochs**=5
- **optim**="paged_lion_8bit"
- **learning_rate**=2e-4
- **warmup_ratio**=0.03
- **max_grad_norm**=0.3
- **lr_scheduler_type**="linear"
### Training Data
For training, I used Merve's Turkish Instructions Dataset, which you can check here: Merve's Turkish Instructions Dataset
## Instruction template:
```python
def format_instruction(sample):
return f"""Sen cevap vermeyi seven yardımcı bir dil modelisin.
### Input:
{sample["talimat"]}
### Context:
{sample[" giriş"]}
### Response:
{sample[" çıktı"]}
"""
```
## Generate Output:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "ardaorcun/finetuned_cosmos2603"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,
device_map='auto',
load_in_8bit=True)
sampling_params = dict(do_sample=True, temperature=0.3, top_k=50, top_p=0.9)
pipe = pipeline("text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
max_new_tokens=512,
return_full_text=True,
repetition_penalty=1.1
)
DEFAULT_SYSTEM_PROMPT = "Sen cevap vermeyi seven yardımcı bir dil modelisin.\n"
def format_instruction(sample):
return f"""{DEFAULT_SYSTEM_PROMPT}
### Input:
{sample["talimat"]}
### Context:
{sample["giriş"]}
### Response:
{sample["çıktı"]}"""
```
# Create Answer:
```python
prompt = "your_prompt"
girdi = "your_entry"
instruction = f"""Sen cevap vermeyi seven yardımcı bir dil modelisin.\n### Input:\n{prompt}\n\n### Context:\n{girdi}\n\n### Response:"""
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length = 2048)
result = pipe(instruction)
print(result[0]['generated_text'][len(instruction):])
```