--- library_name: peft base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 tags: - axolotl - generated_from_trainer model-index: - name: 859d6a15-2b02-4c20-9f3b-f3d68f66bf3b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e4d306039d8c0753_train_data.json ds_type: json format: custom path: /workspace/input_data/e4d306039d8c0753_train_data.json type: field_input: benchmark_q_id field_instruction: input field_output: code_output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: ardaspear/859d6a15-2b02-4c20-9f3b-f3d68f66bf3b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: true lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 8 mlflow_experiment_name: /tmp/e4d306039d8c0753_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: false sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: leixa-personal wandb_mode: online wandb_name: ec4d6676-4911-4d65-b32e-db81c1b6aee7 wandb_project: Gradients-On-Five wandb_run: your_name wandb_runid: ec4d6676-4911-4d65-b32e-db81c1b6aee7 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 859d6a15-2b02-4c20-9f3b-f3d68f66bf3b This model is a fine-tuned version of [MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4](https://huggingface.co/MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0019 | 1 | 0.1906 | | 0.17 | 0.0097 | 5 | 0.1352 | | 0.1328 | 0.0193 | 10 | 0.1191 | | 0.125 | 0.0290 | 15 | 0.1152 | | 0.1103 | 0.0386 | 20 | 0.1112 | | 0.1057 | 0.0483 | 25 | 0.1078 | | 0.094 | 0.0580 | 30 | 0.1055 | | 0.1154 | 0.0676 | 35 | 0.1025 | | 0.0931 | 0.0773 | 40 | 0.1009 | | 0.1039 | 0.0870 | 45 | 0.0999 | | 0.11 | 0.0966 | 50 | 0.0997 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1