--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - Whisper - Quran - Speech Recognition - 'dataset: abdulhamedeid/quran-verses-audio-clips' - generated_from_trainer metrics: - wer model-index: - name: Whisper Small For Quran results: [] --- # Whisper Small For Quran This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0425 - Wer: 11.9814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 35 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1319 | 0.5845 | 1000 | 0.1063 | 17.3778 | | 0.0507 | 1.1689 | 2000 | 0.0701 | 14.1397 | | 0.0406 | 1.7534 | 3000 | 0.0499 | 12.7187 | | 0.0352 | 2.3378 | 4000 | 0.0425 | 11.9814 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0