alvarobartt HF staff commited on
Commit
e903635
1 Parent(s): e24828f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +164 -26
README.md CHANGED
@@ -1,43 +1,95 @@
1
  ---
2
- license: apache-2.0
3
- base_model: alignment-handbook/zephyr-7b-sft-full
4
- tags:
5
- - generated_from_trainer
6
  model-index:
7
- - name: notus-7b-dpo
8
  results: []
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
 
 
 
 
 
 
 
13
 
14
  # notus-7b-dpo
15
 
16
- This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the None dataset.
17
- It achieves the following results on the evaluation set:
18
- - Loss: 0.4730
19
- - Rewards/chosen: -3.5289
20
- - Rewards/rejected: -7.3700
21
- - Rewards/accuracies: 0.8016
22
- - Rewards/margins: 3.8412
23
- - Logps/rejected: -316.3751
24
- - Logps/chosen: -334.3053
25
- - Logits/rejected: -2.1644
26
- - Logits/chosen: -2.4556
 
 
 
 
 
 
 
27
 
28
- ## Model description
29
 
30
- More information needed
31
 
32
- ## Intended uses & limitations
33
 
34
- More information needed
35
 
36
- ## Training and evaluation data
37
 
38
- More information needed
39
 
40
- ## Training procedure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
  ### Training hyperparameters
43
 
@@ -88,10 +140,96 @@ The following hyperparameters were used during training:
88
  | 0.0059 | 2.8 | 2700 | 0.4694 | -3.4307 | -7.2484 | 0.7976 | 3.8177 | -315.1584 | -333.3234 | -2.1572 | -2.4483 |
89
  | 0.0054 | 2.91 | 2800 | 0.4707 | -3.4959 | -7.3283 | 0.8056 | 3.8324 | -315.9576 | -333.9758 | -2.1575 | -2.4491 |
90
 
91
-
92
  ### Framework versions
93
 
94
  - Transformers 4.35.0
95
  - Pytorch 2.1.1+cu121
96
  - Datasets 2.14.6
97
  - Tokenizers 0.14.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
 
2
  model-index:
3
+ - name: notus-7b-dpo-lora
4
  results: []
5
+ datasets:
6
+ - argilla/ultrafeedback-binarized-avg-rating-for-dpo
7
+ language:
8
+ - en
9
+ base_model: alignment-handbook/zephyr-7b-sft-full
10
+ library_name: transformers
11
+ pipeline_tag: text-generation
12
+ tags:
13
+ - dpo
14
+ - preference
15
+ - ultrafeedback
16
+ license: apache-2.0
17
  ---
18
 
19
+ # Model Card for Notus 7B
20
+
21
+ Notus is going to be a collection of fine-tuned models using DPO, similarly to Zephyr, but mainly focused
22
+ on the Direct Preference Optimization (DPO) step, aiming to incorporate preference feedback into the LLMs
23
+ when fine-tuning those. Notus models are intended to be used as assistants via chat-like applications, and
24
+ are evaluated with the MT-Bench and AlpacaEval benchmarks, to be directly compared with Zephyr fine-tuned models
25
+ also using DPO.
26
+
27
+ ## Model Details
28
 
29
  # notus-7b-dpo
30
 
31
+ ### Model Description
32
+
33
+ - **Developed by:** Argilla, Inc. (based on HuggingFace H4 and MistralAI previous efforts and amazing work)
34
+ - **Shared by:** Argilla, Inc.
35
+ - **Model type:** GPT-like 7B model DPO fine-tuned
36
+ - **Language(s) (NLP):** Mainly English
37
+ - **License:** Apache 2.0 (same as Zephyr 7B SFT and Mistral 7B v0.1)
38
+ - **Finetuned from model:** [`alignment-handbook/zephyr-7b-sft-full`](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full)
39
+
40
+ ### Model Sources [optional]
41
+
42
+ - **Repository:** https://github.com/argilla-io/notus-7b-dpo
43
+ - **Paper:** N/A
44
+ - **Demo:** https://argilla-notus-chat-ui.hf.space/
45
+
46
+ ## Uses
47
+
48
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
49
 
50
+ ### Direct Use
51
 
52
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
53
 
54
+ [More Information Needed]
55
 
56
+ ### Downstream Use [optional]
57
 
58
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
59
 
60
+ [More Information Needed]
61
 
62
+ ### Out-of-Scope Use
63
+
64
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
65
+
66
+ [More Information Needed]
67
+
68
+ ## Bias, Risks, and Limitations
69
+
70
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
71
+
72
+ [More Information Needed]
73
+
74
+ ### Recommendations
75
+
76
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
77
+
78
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
79
+
80
+ ## How to Get Started with the Model
81
+
82
+ Use the code below to get started with the model.
83
+
84
+ [More Information Needed]
85
+
86
+ ## Training Details
87
+
88
+ ### Training Data
89
+
90
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
91
+
92
+ [More Information Needed]
93
 
94
  ### Training hyperparameters
95
 
 
140
  | 0.0059 | 2.8 | 2700 | 0.4694 | -3.4307 | -7.2484 | 0.7976 | 3.8177 | -315.1584 | -333.3234 | -2.1572 | -2.4483 |
141
  | 0.0054 | 2.91 | 2800 | 0.4707 | -3.4959 | -7.3283 | 0.8056 | 3.8324 | -315.9576 | -333.9758 | -2.1575 | -2.4491 |
142
 
 
143
  ### Framework versions
144
 
145
  - Transformers 4.35.0
146
  - Pytorch 2.1.1+cu121
147
  - Datasets 2.14.6
148
  - Tokenizers 0.14.1
149
+
150
+ ## Evaluation
151
+
152
+ - Loss: 0.4730
153
+ - Rewards/chosen: -3.5289
154
+ - Rewards/rejected: -7.3700
155
+ - Rewards/accuracies: 0.8016
156
+ - Rewards/margins: 3.8412
157
+ - Logps/rejected: -316.3751
158
+ - Logps/chosen: -334.3053
159
+ - Logits/rejected: -2.1644
160
+ - Logits/chosen: -2.4556
161
+
162
+ ### Testing Data, Factors & Metrics
163
+
164
+ #### Testing Data
165
+
166
+ <!-- This should link to a Data Card if possible. -->
167
+
168
+ [More Information Needed]
169
+
170
+ #### Factors
171
+
172
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
173
+
174
+ [More Information Needed]
175
+
176
+ #### Metrics
177
+
178
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
179
+
180
+ [More Information Needed]
181
+
182
+ ### Results
183
+
184
+ [More Information Needed]
185
+
186
+ #### Summary
187
+
188
+
189
+ ## Technical Specifications
190
+
191
+ ### Model Architecture and Objective
192
+
193
+ [More Information Needed]
194
+
195
+ ### Compute Infrastructure
196
+
197
+ [More Information Needed]
198
+
199
+ #### Hardware
200
+
201
+ 8 x A100 40GB
202
+
203
+ #### Software
204
+
205
+ [More Information Needed]
206
+
207
+ ## Citation [optional]
208
+
209
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
210
+
211
+ **BibTeX:**
212
+
213
+ [More Information Needed]
214
+
215
+ **APA:**
216
+
217
+ [More Information Needed]
218
+
219
+ ## Glossary [optional]
220
+
221
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
222
+
223
+ [More Information Needed]
224
+
225
+ ## More Information [optional]
226
+
227
+ [More Information Needed]
228
+
229
+ ## Model Card Authors [optional]
230
+
231
+ [More Information Needed]
232
+
233
+ ## Model Card Contact
234
+
235
+ [More Information Needed]