--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: distilhubert-finetuned-RHD_Dataset results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8048780487804879 --- # distilhubert-finetuned-RHD_Dataset This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9447 - Accuracy: 0.8049 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0412 | 1.0 | 46 | 1.0084 | 0.6829 | | 0.8547 | 2.0 | 92 | 0.8433 | 0.6585 | | 0.7936 | 3.0 | 138 | 0.7128 | 0.7073 | | 0.5984 | 4.0 | 184 | 0.7778 | 0.7317 | | 0.3888 | 5.0 | 230 | 0.6361 | 0.7317 | | 0.4947 | 6.0 | 276 | 0.7471 | 0.7805 | | 0.1663 | 7.0 | 322 | 0.8244 | 0.7561 | | 0.1379 | 8.0 | 368 | 0.7986 | 0.8049 | | 0.0405 | 9.0 | 414 | 0.8892 | 0.8049 | | 0.0229 | 10.0 | 460 | 0.9447 | 0.8049 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0