--- license: apache-2.0 tags: - generated_from_trainer datasets: - ecommerce_reviews_with_language_drift metrics: - accuracy - f1 model-index: - name: distilbert_reviews_with_language_drift results: - task: name: Text Classification type: text-classification dataset: name: ecommerce_reviews_with_language_drift type: ecommerce_reviews_with_language_drift args: default metrics: - name: Accuracy type: accuracy value: 0.818 - name: F1 type: f1 value: 0.8167126877417763 widget: - text: "Poor quality of fabric and ridiculously tight at chest. It's way too short." example_title: "Negative" - text: "One worked perfectly, but the other one has a slight leak and we end up with water underneath the filter." example_title: "Neutral" - text: "I liked the price most! Nothing to dislike here!" example_title: "Positive" --- # distilbert_reviews_with_language_drift This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ecommerce_reviews_with_language_drift dataset. It achieves the following results on the evaluation set: - Loss: 0.4970 - Accuracy: 0.818 - F1: 0.8167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.593 | 1.0 | 500 | 0.4723 | 0.799 | 0.7976 | | 0.3714 | 2.0 | 1000 | 0.4679 | 0.818 | 0.8177 | | 0.2652 | 3.0 | 1500 | 0.4970 | 0.818 | 0.8167 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1