File size: 1,943 Bytes
a966167 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- cifar10_quality_drift
metrics:
- accuracy
- f1
model-index:
- name: resnet-50-cifar10-quality-drift
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: cifar10_quality_drift
type: cifar10_quality_drift
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.724
- name: F1
type: f1
value: 0.7221970011456912
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# resnet-50-cifar10-quality-drift
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the cifar10_quality_drift dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8235
- Accuracy: 0.724
- F1: 0.7222
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.7311 | 1.0 | 750 | 1.1310 | 0.6333 | 0.6300 |
| 1.1728 | 2.0 | 1500 | 0.8495 | 0.7153 | 0.7155 |
| 1.0322 | 3.0 | 2250 | 0.8235 | 0.724 | 0.7222 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|