--- license: apache-2.0 tags: - generated_from_trainer datasets: - cifar10_quality_drift metrics: - accuracy - f1 model-index: - name: resnet-50-cifar10-quality-drift results: - task: name: Image Classification type: image-classification dataset: name: cifar10_quality_drift type: cifar10_quality_drift args: default metrics: - name: Accuracy type: accuracy value: 0.724 - name: F1 type: f1 value: 0.7221970011456912 --- # resnet-50-cifar10-quality-drift This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the cifar10_quality_drift dataset. It achieves the following results on the evaluation set: - Loss: 0.8235 - Accuracy: 0.724 - F1: 0.7222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.7311 | 1.0 | 750 | 1.1310 | 0.6333 | 0.6300 | | 1.1728 | 2.0 | 1500 | 0.8495 | 0.7153 | 0.7155 | | 1.0322 | 3.0 | 2250 | 0.8235 | 0.724 | 0.7222 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1