File size: 2,414 Bytes
94ce757 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: wtfpl
datasets:
- arkodeep/spam-data
language:
- en
tags:
- spam
- spam classification
- text
- spam detection
- text classification
---
# Spam Detection System
## Lite Model
### Introduction
The Lite model is a streamlined approach with optimized parameters and enhanced feature extraction designed for quick and efficient spam detection.
### Features
- **Text Preprocessing**: Lemmatization, removal of stop words and punctuation.
- **Feature Extraction**: Text length, word count, unique word count, uppercase count, special character count.
- **Model Creation**: Ensemble model using SVC, MultinomialNB, and ExtraTreesClassifier.
- **Visualization**: Generates graphs for dataset insights, word clouds, and performance metrics.
- **Metrics Saving**: Accuracy, precision, and F1 score.
### How to Run
1. **Train the Model**:
```bash
python training/train_model_lite.py
```
2. **Use the Model**:
```python
import joblib
model = joblib.load('models/model.pkl')
vectorizer = joblib.load('models/vectorizer.pkl')
```
## Legacy Model
### Introduction
The Legacy model retains the original model logic without optimization but updates the structure and adds visualizations for spam detection.
### Features
- **Text Preprocessing**: Porter Stemming, removal of stop words and punctuation.
- **Model Creation**: Ensemble model using SVC, MultinomialNB, and ExtraTreesClassifier with original parameters.
- **Visualization**: Generates graphs for dataset insights, word clouds, and performance metrics.
- **Metrics Saving**: Accuracy and precision.
### How to Run
1. **Train the Model**:
```bash
python training/train_model_legacy.py
```
2. **Use the Model**:
```python
import joblib
model = joblib.load('models/model.pkl')
vectorizer = joblib.load('models/vectorizer.pkl')
```
### Additional Information
- **Dependencies**: Python 3.6 or higher, pip, and required packages listed in `requirements.txt`.
- **Dataset**: The dataset used for training is `spam.csv`.
- **Contact and Support**: For questions or support, please contact the project maintainers.
For more details, you can refer to the [README.md](https://github.com/arkodeepsen/spam-filter-mbo/blob/4894a939099e5523f22bf3c2e5b3d763c92a73c6/README.md) and [models.md](https://github.com/arkodeepsen/spam-filter-mbo/blob/4894a939099e5523f22bf3c2e5b3d763c92a73c6/models.md). |