arodriguez commited on
Commit
18983fc
1 Parent(s): 38fab1b

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 212.51 +/- 68.99
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd9d60fa950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd9d60fa9e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd9d60faa70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd9d60fab00>", "_build": "<function ActorCriticPolicy._build at 0x7fd9d60fab90>", "forward": "<function ActorCriticPolicy.forward at 0x7fd9d60fac20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd9d60facb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd9d60fad40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd9d60fadd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd9d60fae60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd9d60faef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd9d6136e40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651919561.4172046, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABQND3feDk++tMLPrzcS74ngWk+lmlYugAAAAAAAAAAs1SaPtNcOz+qTyY+v5GcviGV3z3xHIK9AAAAAAAAAAD67sI+T5NCP6rLqjz5SpO+i3ZXPm3nLb4AAAAAAAAAAACwdj0UrpW26KGPuzTJA7ciwca6HBGqOgAAgD8AAIA/c0IVvskkiD+eF9C9NzSrvvKkVL4prJE9AAAAAAAAAAAzVL2+xFQAPxPKjT6Ak5W+X+DSulMLrD0AAAAAAAAAAMZuhD6hRDE+wwOyPKVXTb4dBGc9tFanvQAAAAAAAAAAkL9QvlJqwjof0xW6xZzFNv5oZ7wDui05AACAPwAAgD+zzII9HwWoOF7k9TsamhE1OmD2Og47+zMAAIA/AACAPxrApz3DISy6hBkzuhV/ULVPzkA7qORROQAAgD8AAIA/oJl6Pk/qhj6pqsQ7sQuUvgFyH75RaJ89AAAAAAAAAAAzxSu9j44VullLEjsiEFA8/ozCujB/FDwAAIA/AACAPwAFPb3d1gM+s5HpPcKca75ZyBy9HzqOPAAAAAAAAAAArfcvPuLRpj63SSs+fOtQvn7WNr7ZIZo9AAAAAAAAAAC6Byq+BZulu6sq6blTO1i351QHPTPqCjkAAIA/AACAPzOH2j0f5fC5Vl5Qu7SkLjkHsi07QxZvOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuB0aFqMBYkCUhpRSlIwBbJRN6AOMAXSUR0B3sf8l5WzXdX2UKGgGaAloD0MIkIR9OwmSYECUhpRSlGgVTegDaBZHQHe1XHaN+9d1fZQoaAZoCWgPQwhWfa62YhlZwJSGlFKUaBVNFQJoFkdAd760Cih37nV9lChoBmgJaA9DCAmp29lXnj/AlIaUUpRoFUvvaBZHQHfCYJAt4A11fZQoaAZoCWgPQwgkDW5rC+s8wJSGlFKUaBVL+GgWR0B3yNpqREF4dX2UKGgGaAloD0MI/14KD5rtGcCUhpRSlGgVS9hoFkdAd9Uh4dIXj3V9lChoBmgJaA9DCNfc0f/ysmrAlIaUUpRoFU10AWgWR0B32YguAZsLdX2UKGgGaAloD0MIrroO1ZQBYUCUhpRSlGgVTegDaBZHQHf0ehCdBjZ1fZQoaAZoCWgPQwhxOV6B6FBUQJSGlFKUaBVN6ANoFkdAd/xQ9A5aNnV9lChoBmgJaA9DCGUaTS7G8DtAlIaUUpRoFU3oA2gWR0B4BzAvcrRTdX2UKGgGaAloD0MI2uVbH1bOYkCUhpRSlGgVTegDaBZHQHgTmknCwbF1fZQoaAZoCWgPQwjK4v4j040xwJSGlFKUaBVL8WgWR0B4FXATIvJzdX2UKGgGaAloD0MIuMzpshicYECUhpRSlGgVTegDaBZHQHgYTXSSeRR1fZQoaAZoCWgPQwgvUb01sIkzQJSGlFKUaBVLymgWR0B4b/1oQFs6dX2UKGgGaAloD0MIfZQRF4D3UUCUhpRSlGgVTegDaBZHQHiD/6CUX551fZQoaAZoCWgPQwjKU1bT9XJHQJSGlFKUaBVN6ANoFkdAeJYs5XEIgXV9lChoBmgJaA9DCIo73uS3WFdAlIaUUpRoFU3oA2gWR0B4wCq6vq1PdX2UKGgGaAloD0MI8FAU6BNlNECUhpRSlGgVS/NoFkdAeMTCjUNKAnV9lChoBmgJaA9DCHy3eeOkGFpAlIaUUpRoFU3oA2gWR0B4x4mVqveQdX2UKGgGaAloD0MIGZEotCwIZECUhpRSlGgVTegDaBZHQHkEOBQN0/51fZQoaAZoCWgPQwhuaTUk7g1RQJSGlFKUaBVN6ANoFkdAeQh9Htnf23V9lChoBmgJaA9DCE7TZwdcslxAlIaUUpRoFU3oA2gWR0B5FTtBv73xdX2UKGgGaAloD0MIXvdWJCYwYkCUhpRSlGgVTegDaBZHQHkZtmcvugJ1fZQoaAZoCWgPQwgdAHFXr1xNQJSGlFKUaBVN6ANoFkdAeSGp8WsRx3V9lChoBmgJaA9DCAVQjCyZu0tAlIaUUpRoFU3oA2gWR0B5NN8E3bVSdX2UKGgGaAloD0MIsmX5ugwPYECUhpRSlGgVTegDaBZHQHla1vhqCYl1fZQoaAZoCWgPQwidSZuqe35JQJSGlFKUaBVN6ANoFkdAeWdLkjopx3V9lChoBmgJaA9DCAjnU8cq8FNAlIaUUpRoFU3oA2gWR0B5dZWDHwPRdX2UKGgGaAloD0MIOkAwR4/HYECUhpRSlGgVTegDaBZHQHl3prYXfqJ1fZQoaAZoCWgPQwih2XVvRfZUQJSGlFKUaBVN6ANoFkdAeXrM0gr6L3V9lChoBmgJaA9DCM7HtaFi/2XAlIaUUpRoFU2DAWgWR0B5iKFj/dZadX2UKGgGaAloD0MI/RGGAUteV0CUhpRSlGgVTegDaBZHQHnTlCPZIxx1fZQoaAZoCWgPQwhZFeEmoxRaQJSGlFKUaBVN6ANoFkdAefsz1schknV9lChoBmgJaA9DCHS1FfvLl1tAlIaUUpRoFU3oA2gWR0B6KDGXHBDYdX2UKGgGaAloD0MIrYkFviJvYECUhpRSlGgVTegDaBZHQHos08JUo8Z1fZQoaAZoCWgPQwh8fa1LjbNcQJSGlFKUaBVN6ANoFkdAei+Sq2jO9nV9lChoBmgJaA9DCP7yyYrhgFpAlIaUUpRoFU3oA2gWR0B6ZPos7MgVdX2UKGgGaAloD0MIIGEYsOQqW0CUhpRSlGgVTegDaBZHQHpo9MK1G9Z1fZQoaAZoCWgPQwhG6j2VU3xjQJSGlFKUaBVN6ANoFkdAenTjASFoMHV9lChoBmgJaA9DCIbKv5ZXC2BAlIaUUpRoFU3oA2gWR0B6gX4fwI+odX2UKGgGaAloD0MIqYO8HkwlVkCUhpRSlGgVTegDaBZHQHqUtg8bJfZ1fZQoaAZoCWgPQwgtW+uLhFhYQJSGlFKUaBVN6ANoFkdAerkdeIEbHnV9lChoBmgJaA9DCCI17WKabTPAlIaUUpRoFU3oA2gWR0B6xVDhLoOhdX2UKGgGaAloD0MIlZ7pJcZPUUCUhpRSlGgVTegDaBZHQHrTh9srNGF1fZQoaAZoCWgPQwjDLR9JSSliQJSGlFKUaBVN6ANoFkdAetXVXV9WqHV9lChoBmgJaA9DCCdO7ncoUVJAlIaUUpRoFU3oA2gWR0B62PJeVs1sdX2UKGgGaAloD0MIChLb3QMjU0CUhpRSlGgVTegDaBZHQHrnAnc+JP91fZQoaAZoCWgPQwj2m4npQsBSQJSGlFKUaBVN6ANoFkdAeuieK8+Ro3V9lChoBmgJaA9DCOMz2T9PwUvAlIaUUpRoFUvGaBZHQHs2uMl1KXh1fZQoaAZoCWgPQwiLMhtkkkNeQJSGlFKUaBVN6ANoFkdAe1LNGmUGFHV9lChoBmgJaA9DCD4mUprNLWJAlIaUUpRoFU3oA2gWR0B7eWjQAuIzdX2UKGgGaAloD0MIuti0UgjATECUhpRSlGgVTegDaBZHQHt98lgMMJB1fZQoaAZoCWgPQwjcuMX83N9dQJSGlFKUaBVN6ANoFkdAe4CjkuHvdHV9lChoBmgJaA9DCHkgskgTUGbAlIaUUpRoFU1UA2gWR0B7nIxVQyh0dX2UKGgGaAloD0MIn+klxjJEU0CUhpRSlGgVTegDaBZHQHu1jDn/1g91fZQoaAZoCWgPQwjfGW1VEuNfQJSGlFKUaBVN6ANoFkdAe7kmyxA0K3V9lChoBmgJaA9DCFQAjGfQpF1AlIaUUpRoFU3oA2gWR0B7z5ATqSowdX2UKGgGaAloD0MI4xx1dFziWkCUhpRSlGgVTegDaBZHQHvhuIInjQ11fZQoaAZoCWgPQwjkSdI1E5xhQJSGlFKUaBVN6ANoFkdAfBEQtSQ5m3V9lChoBmgJaA9DCBtHrMWnoAVAlIaUUpRoFU0TAWgWR0B8HEEW69TQdX2UKGgGaAloD0MIgbT/AVb3YkCUhpRSlGgVTegDaBZHQHwe0IPbwjN1fZQoaAZoCWgPQwh2i8BY33tgQJSGlFKUaBVN6ANoFkdAfCDIatLcsXV9lChoBmgJaA9DCJ+USQ1tmFZAlIaUUpRoFU3oA2gWR0B8I9nVXmvGdX2UKGgGaAloD0MImZ8bmrKhWUCUhpRSlGgVTegDaBZHQHwxtNN8E3d1fZQoaAZoCWgPQwhHA3gLJNdfQJSGlFKUaBVN6ANoFkdAfDNbDuSfUXV9lChoBmgJaA9DCENznUZag1NAlIaUUpRoFU3oA2gWR0B8OKiBXjlxdX2UKGgGaAloD0MITU2CN6QuYkCUhpRSlGgVTegDaBZHQHyeNSIgvDh1fZQoaAZoCWgPQwi4V+atuiFZQJSGlFKUaBVN6ANoFkdAfMe5HVf/m3V9lChoBmgJaA9DCE2giEUMSF1AlIaUUpRoFU3oA2gWR0B8zGaw2VFAdX2UKGgGaAloD0MIK4TVWMImW0CUhpRSlGgVTegDaBZHQHzPSNbTtsx1fZQoaAZoCWgPQwhnmxvTE2NfQJSGlFKUaBVN6ANoFkdAfOtk8zQ/o3V9lChoBmgJaA9DCMkh4uZUpFpAlIaUUpRoFU3oA2gWR0B9A2LcbiqAdX2UKGgGaAloD0MI0R+aeXJ8YkCUhpRSlGgVTegDaBZHQH0GtCzC1qp1fZQoaAZoCWgPQwhWYwlrYwwqQJSGlFKUaBVL8WgWR0B9KF/oaDPGdX2UKGgGaAloD0MIwxA5fT28W0CUhpRSlGgVTegDaBZHQH0tJr56+nJ1fZQoaAZoCWgPQwjUf9b8eEdhQJSGlFKUaBVN6ANoFkdAfVo7jkuHvnV9lChoBmgJaA9DCKERbFx/QGBAlIaUUpRoFU3oA2gWR0B9ZUO7QLNOdX2UKGgGaAloD0MIz/boDfeUUECUhpRSlGgVTegDaBZHQH1nuearmyR1fZQoaAZoCWgPQwijWkQUk41WQJSGlFKUaBVN6ANoFkdAfWmn62v0RXV9lChoBmgJaA9DCCoaa39nn1hAlIaUUpRoFU3oA2gWR0B9bKYrrgO0dX2UKGgGaAloD0MISdv4ExV7YUCUhpRSlGgVTZMCaBZHQH1z9fw7T2F1fZQoaAZoCWgPQwgmN4qsNXxYQJSGlFKUaBVN6ANoFkdAfXmJbt7a7HV9lChoBmgJaA9DCLCSj90FU1RAlIaUUpRoFU3oA2gWR0B9evg3tKI0dX2UKGgGaAloD0MISYCaWrY8TUCUhpRSlGgVTegDaBZHQH1/1WCEpRZ1fZQoaAZoCWgPQwjrbwnAP35ZQJSGlFKUaBVN6ANoFkdAfeGkTpPhynV9lChoBmgJaA9DCNmwprIokl9AlIaUUpRoFU3oA2gWR0B+CfIEKVpsdX2UKGgGaAloD0MI/g5FgT6FUkCUhpRSlGgVTegDaBZHQH4Mmh24d6t1fZQoaAZoCWgPQwgc7bjh95RhQJSGlFKUaBVN6ANoFkdAfj+wT/Q0GnV9lChoBmgJaA9DCLovZ7YrEFpAlIaUUpRoFU3oA2gWR0B+Q0iFCb+cdX2UKGgGaAloD0MIIorJG2CWVECUhpRSlGgVTegDaBZHQH5nTC1qnFZ1fZQoaAZoCWgPQwhWZkrrb0FYQJSGlFKUaBVN6ANoFkdAfmw5rgwXZXV9lChoBmgJaA9DCKwCtRg87lZAlIaUUpRoFU3oA2gWR0B+mmmZVn27dX2UKGgGaAloD0MIOBJosKnjW0CUhpRSlGgVTegDaBZHQH6lXoC+10F1fZQoaAZoCWgPQwizmNh8XENkQJSGlFKUaBVN6ANoFkdAfqe5n13+uXV9lChoBmgJaA9DCBJqhlTRL2JAlIaUUpRoFU3oA2gWR0B+qaFbmlqKdX2UKGgGaAloD0MI647FNimOYECUhpRSlGgVTegDaBZHQH6sU2cawUx1fZQoaAZoCWgPQwjcm98wUbplQJSGlFKUaBVN6ANoFkdAfrOXHzYmLXV9lChoBmgJaA9DCHLChNGsZ1xAlIaUUpRoFU3oA2gWR0B+uM6FM7EHdX2UKGgGaAloD0MIuoEC7+T3XkCUhpRSlGgVTegDaBZHQH66ZpztCzF1fZQoaAZoCWgPQwhxAtNp3atgQJSGlFKUaBVN6ANoFkdAfr9/8l5WzXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:712245c85d583d6aecd2f9bd8933334d0151405700ce69f9bcb32eb4ef94ca02
3
+ size 144040
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd9d60fa950>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd9d60fa9e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd9d60faa70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd9d60fab00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd9d60fab90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd9d60fac20>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd9d60facb0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd9d60fad40>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd9d60fadd0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd9d60fae60>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd9d60faef0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fd9d6136e40>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651919561.4172046,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABQND3feDk++tMLPrzcS74ngWk+lmlYugAAAAAAAAAAs1SaPtNcOz+qTyY+v5GcviGV3z3xHIK9AAAAAAAAAAD67sI+T5NCP6rLqjz5SpO+i3ZXPm3nLb4AAAAAAAAAAACwdj0UrpW26KGPuzTJA7ciwca6HBGqOgAAgD8AAIA/c0IVvskkiD+eF9C9NzSrvvKkVL4prJE9AAAAAAAAAAAzVL2+xFQAPxPKjT6Ak5W+X+DSulMLrD0AAAAAAAAAAMZuhD6hRDE+wwOyPKVXTb4dBGc9tFanvQAAAAAAAAAAkL9QvlJqwjof0xW6xZzFNv5oZ7wDui05AACAPwAAgD+zzII9HwWoOF7k9TsamhE1OmD2Og47+zMAAIA/AACAPxrApz3DISy6hBkzuhV/ULVPzkA7qORROQAAgD8AAIA/oJl6Pk/qhj6pqsQ7sQuUvgFyH75RaJ89AAAAAAAAAAAzxSu9j44VullLEjsiEFA8/ozCujB/FDwAAIA/AACAPwAFPb3d1gM+s5HpPcKca75ZyBy9HzqOPAAAAAAAAAAArfcvPuLRpj63SSs+fOtQvn7WNr7ZIZo9AAAAAAAAAAC6Byq+BZulu6sq6blTO1i351QHPTPqCjkAAIA/AACAPzOH2j0f5fC5Vl5Qu7SkLjkHsi07QxZvOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuB0aFqMBYkCUhpRSlIwBbJRN6AOMAXSUR0B3sf8l5WzXdX2UKGgGaAloD0MIkIR9OwmSYECUhpRSlGgVTegDaBZHQHe1XHaN+9d1fZQoaAZoCWgPQwhWfa62YhlZwJSGlFKUaBVNFQJoFkdAd760Cih37nV9lChoBmgJaA9DCAmp29lXnj/AlIaUUpRoFUvvaBZHQHfCYJAt4A11fZQoaAZoCWgPQwgkDW5rC+s8wJSGlFKUaBVL+GgWR0B3yNpqREF4dX2UKGgGaAloD0MI/14KD5rtGcCUhpRSlGgVS9hoFkdAd9Uh4dIXj3V9lChoBmgJaA9DCNfc0f/ysmrAlIaUUpRoFU10AWgWR0B32YguAZsLdX2UKGgGaAloD0MIrroO1ZQBYUCUhpRSlGgVTegDaBZHQHf0ehCdBjZ1fZQoaAZoCWgPQwhxOV6B6FBUQJSGlFKUaBVN6ANoFkdAd/xQ9A5aNnV9lChoBmgJaA9DCGUaTS7G8DtAlIaUUpRoFU3oA2gWR0B4BzAvcrRTdX2UKGgGaAloD0MI2uVbH1bOYkCUhpRSlGgVTegDaBZHQHgTmknCwbF1fZQoaAZoCWgPQwjK4v4j040xwJSGlFKUaBVL8WgWR0B4FXATIvJzdX2UKGgGaAloD0MIuMzpshicYECUhpRSlGgVTegDaBZHQHgYTXSSeRR1fZQoaAZoCWgPQwgvUb01sIkzQJSGlFKUaBVLymgWR0B4b/1oQFs6dX2UKGgGaAloD0MIfZQRF4D3UUCUhpRSlGgVTegDaBZHQHiD/6CUX551fZQoaAZoCWgPQwjKU1bT9XJHQJSGlFKUaBVN6ANoFkdAeJYs5XEIgXV9lChoBmgJaA9DCIo73uS3WFdAlIaUUpRoFU3oA2gWR0B4wCq6vq1PdX2UKGgGaAloD0MI8FAU6BNlNECUhpRSlGgVS/NoFkdAeMTCjUNKAnV9lChoBmgJaA9DCHy3eeOkGFpAlIaUUpRoFU3oA2gWR0B4x4mVqveQdX2UKGgGaAloD0MIGZEotCwIZECUhpRSlGgVTegDaBZHQHkEOBQN0/51fZQoaAZoCWgPQwhuaTUk7g1RQJSGlFKUaBVN6ANoFkdAeQh9Htnf23V9lChoBmgJaA9DCE7TZwdcslxAlIaUUpRoFU3oA2gWR0B5FTtBv73xdX2UKGgGaAloD0MIXvdWJCYwYkCUhpRSlGgVTegDaBZHQHkZtmcvugJ1fZQoaAZoCWgPQwgdAHFXr1xNQJSGlFKUaBVN6ANoFkdAeSGp8WsRx3V9lChoBmgJaA9DCAVQjCyZu0tAlIaUUpRoFU3oA2gWR0B5NN8E3bVSdX2UKGgGaAloD0MIsmX5ugwPYECUhpRSlGgVTegDaBZHQHla1vhqCYl1fZQoaAZoCWgPQwidSZuqe35JQJSGlFKUaBVN6ANoFkdAeWdLkjopx3V9lChoBmgJaA9DCAjnU8cq8FNAlIaUUpRoFU3oA2gWR0B5dZWDHwPRdX2UKGgGaAloD0MIOkAwR4/HYECUhpRSlGgVTegDaBZHQHl3prYXfqJ1fZQoaAZoCWgPQwih2XVvRfZUQJSGlFKUaBVN6ANoFkdAeXrM0gr6L3V9lChoBmgJaA9DCM7HtaFi/2XAlIaUUpRoFU2DAWgWR0B5iKFj/dZadX2UKGgGaAloD0MI/RGGAUteV0CUhpRSlGgVTegDaBZHQHnTlCPZIxx1fZQoaAZoCWgPQwhZFeEmoxRaQJSGlFKUaBVN6ANoFkdAefsz1schknV9lChoBmgJaA9DCHS1FfvLl1tAlIaUUpRoFU3oA2gWR0B6KDGXHBDYdX2UKGgGaAloD0MIrYkFviJvYECUhpRSlGgVTegDaBZHQHos08JUo8Z1fZQoaAZoCWgPQwh8fa1LjbNcQJSGlFKUaBVN6ANoFkdAei+Sq2jO9nV9lChoBmgJaA9DCP7yyYrhgFpAlIaUUpRoFU3oA2gWR0B6ZPos7MgVdX2UKGgGaAloD0MIIGEYsOQqW0CUhpRSlGgVTegDaBZHQHpo9MK1G9Z1fZQoaAZoCWgPQwhG6j2VU3xjQJSGlFKUaBVN6ANoFkdAenTjASFoMHV9lChoBmgJaA9DCIbKv5ZXC2BAlIaUUpRoFU3oA2gWR0B6gX4fwI+odX2UKGgGaAloD0MIqYO8HkwlVkCUhpRSlGgVTegDaBZHQHqUtg8bJfZ1fZQoaAZoCWgPQwgtW+uLhFhYQJSGlFKUaBVN6ANoFkdAerkdeIEbHnV9lChoBmgJaA9DCCI17WKabTPAlIaUUpRoFU3oA2gWR0B6xVDhLoOhdX2UKGgGaAloD0MIlZ7pJcZPUUCUhpRSlGgVTegDaBZHQHrTh9srNGF1fZQoaAZoCWgPQwjDLR9JSSliQJSGlFKUaBVN6ANoFkdAetXVXV9WqHV9lChoBmgJaA9DCCdO7ncoUVJAlIaUUpRoFU3oA2gWR0B62PJeVs1sdX2UKGgGaAloD0MIChLb3QMjU0CUhpRSlGgVTegDaBZHQHrnAnc+JP91fZQoaAZoCWgPQwj2m4npQsBSQJSGlFKUaBVN6ANoFkdAeuieK8+Ro3V9lChoBmgJaA9DCOMz2T9PwUvAlIaUUpRoFUvGaBZHQHs2uMl1KXh1fZQoaAZoCWgPQwiLMhtkkkNeQJSGlFKUaBVN6ANoFkdAe1LNGmUGFHV9lChoBmgJaA9DCD4mUprNLWJAlIaUUpRoFU3oA2gWR0B7eWjQAuIzdX2UKGgGaAloD0MIuti0UgjATECUhpRSlGgVTegDaBZHQHt98lgMMJB1fZQoaAZoCWgPQwjcuMX83N9dQJSGlFKUaBVN6ANoFkdAe4CjkuHvdHV9lChoBmgJaA9DCHkgskgTUGbAlIaUUpRoFU1UA2gWR0B7nIxVQyh0dX2UKGgGaAloD0MIn+klxjJEU0CUhpRSlGgVTegDaBZHQHu1jDn/1g91fZQoaAZoCWgPQwjfGW1VEuNfQJSGlFKUaBVN6ANoFkdAe7kmyxA0K3V9lChoBmgJaA9DCFQAjGfQpF1AlIaUUpRoFU3oA2gWR0B7z5ATqSowdX2UKGgGaAloD0MI4xx1dFziWkCUhpRSlGgVTegDaBZHQHvhuIInjQ11fZQoaAZoCWgPQwjkSdI1E5xhQJSGlFKUaBVN6ANoFkdAfBEQtSQ5m3V9lChoBmgJaA9DCBtHrMWnoAVAlIaUUpRoFU0TAWgWR0B8HEEW69TQdX2UKGgGaAloD0MIgbT/AVb3YkCUhpRSlGgVTegDaBZHQHwe0IPbwjN1fZQoaAZoCWgPQwh2i8BY33tgQJSGlFKUaBVN6ANoFkdAfCDIatLcsXV9lChoBmgJaA9DCJ+USQ1tmFZAlIaUUpRoFU3oA2gWR0B8I9nVXmvGdX2UKGgGaAloD0MImZ8bmrKhWUCUhpRSlGgVTegDaBZHQHwxtNN8E3d1fZQoaAZoCWgPQwhHA3gLJNdfQJSGlFKUaBVN6ANoFkdAfDNbDuSfUXV9lChoBmgJaA9DCENznUZag1NAlIaUUpRoFU3oA2gWR0B8OKiBXjlxdX2UKGgGaAloD0MITU2CN6QuYkCUhpRSlGgVTegDaBZHQHyeNSIgvDh1fZQoaAZoCWgPQwi4V+atuiFZQJSGlFKUaBVN6ANoFkdAfMe5HVf/m3V9lChoBmgJaA9DCE2giEUMSF1AlIaUUpRoFU3oA2gWR0B8zGaw2VFAdX2UKGgGaAloD0MIK4TVWMImW0CUhpRSlGgVTegDaBZHQHzPSNbTtsx1fZQoaAZoCWgPQwhnmxvTE2NfQJSGlFKUaBVN6ANoFkdAfOtk8zQ/o3V9lChoBmgJaA9DCMkh4uZUpFpAlIaUUpRoFU3oA2gWR0B9A2LcbiqAdX2UKGgGaAloD0MI0R+aeXJ8YkCUhpRSlGgVTegDaBZHQH0GtCzC1qp1fZQoaAZoCWgPQwhWYwlrYwwqQJSGlFKUaBVL8WgWR0B9KF/oaDPGdX2UKGgGaAloD0MIwxA5fT28W0CUhpRSlGgVTegDaBZHQH0tJr56+nJ1fZQoaAZoCWgPQwjUf9b8eEdhQJSGlFKUaBVN6ANoFkdAfVo7jkuHvnV9lChoBmgJaA9DCKERbFx/QGBAlIaUUpRoFU3oA2gWR0B9ZUO7QLNOdX2UKGgGaAloD0MIz/boDfeUUECUhpRSlGgVTegDaBZHQH1nuearmyR1fZQoaAZoCWgPQwijWkQUk41WQJSGlFKUaBVN6ANoFkdAfWmn62v0RXV9lChoBmgJaA9DCCoaa39nn1hAlIaUUpRoFU3oA2gWR0B9bKYrrgO0dX2UKGgGaAloD0MISdv4ExV7YUCUhpRSlGgVTZMCaBZHQH1z9fw7T2F1fZQoaAZoCWgPQwgmN4qsNXxYQJSGlFKUaBVN6ANoFkdAfXmJbt7a7HV9lChoBmgJaA9DCLCSj90FU1RAlIaUUpRoFU3oA2gWR0B9evg3tKI0dX2UKGgGaAloD0MISYCaWrY8TUCUhpRSlGgVTegDaBZHQH1/1WCEpRZ1fZQoaAZoCWgPQwjrbwnAP35ZQJSGlFKUaBVN6ANoFkdAfeGkTpPhynV9lChoBmgJaA9DCNmwprIokl9AlIaUUpRoFU3oA2gWR0B+CfIEKVpsdX2UKGgGaAloD0MI/g5FgT6FUkCUhpRSlGgVTegDaBZHQH4Mmh24d6t1fZQoaAZoCWgPQwgc7bjh95RhQJSGlFKUaBVN6ANoFkdAfj+wT/Q0GnV9lChoBmgJaA9DCLovZ7YrEFpAlIaUUpRoFU3oA2gWR0B+Q0iFCb+cdX2UKGgGaAloD0MIIorJG2CWVECUhpRSlGgVTegDaBZHQH5nTC1qnFZ1fZQoaAZoCWgPQwhWZkrrb0FYQJSGlFKUaBVN6ANoFkdAfmw5rgwXZXV9lChoBmgJaA9DCKwCtRg87lZAlIaUUpRoFU3oA2gWR0B+mmmZVn27dX2UKGgGaAloD0MIOBJosKnjW0CUhpRSlGgVTegDaBZHQH6lXoC+10F1fZQoaAZoCWgPQwizmNh8XENkQJSGlFKUaBVN6ANoFkdAfqe5n13+uXV9lChoBmgJaA9DCBJqhlTRL2JAlIaUUpRoFU3oA2gWR0B+qaFbmlqKdX2UKGgGaAloD0MI647FNimOYECUhpRSlGgVTegDaBZHQH6sU2cawUx1fZQoaAZoCWgPQwjcm98wUbplQJSGlFKUaBVN6ANoFkdAfrOXHzYmLXV9lChoBmgJaA9DCHLChNGsZ1xAlIaUUpRoFU3oA2gWR0B+uM6FM7EHdX2UKGgGaAloD0MIuoEC7+T3XkCUhpRSlGgVTegDaBZHQH66ZpztCzF1fZQoaAZoCWgPQwhxAtNp3atgQJSGlFKUaBVN6ANoFkdAfr9/8l5WzXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4386180a0d0129473e2fcb7384450ca666d404b55f655834ada04f71ff998af
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dea204b39a57b90c15ae6ba18e4081ba453a96d8734b927ac95482c2b57c44ad
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51f9ba67997aa3af67330620fd6ea31369dd7509d2a8e4f70181b38231ed9528
3
+ size 254003
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 212.50900957645837, "std_reward": 68.98924672440191, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T10:45:14.845676"}