arodriguez's picture
Upload PPO LunarLander-v2 trained agent
cdeb510 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a7b83515b40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a7b83515bd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a7b83515c60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a7b83515cf0>", "_build": "<function ActorCriticPolicy._build at 0x7a7b83515d80>", "forward": "<function ActorCriticPolicy.forward at 0x7a7b83515e10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a7b83515ea0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a7b83515f30>", "_predict": "<function ActorCriticPolicy._predict at 0x7a7b83515fc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a7b83516050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a7b835160e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a7b83516170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a7b834bf000>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1715777346972795466, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3vxjySB60/ZvEqPhl9ub7/8oU9NjIjPgAAAAAAAAAAAJKIvRRCibq+dGO7TROINaJf6Dq6mfy0AACAPwAAgD+AD0+9UoCWuesi8jIRV3oxWtOZOvCph7MAAIA/AACAP0AcqT3hUJG6pKiGOtKzozUCtY46OkmbuQAAgD8AAIA/zaMyPXsS7T65EBK83DV1vspALL2cHYI8AAAAAAAAAADNyiU94einus/jGTr0D5+195adOcGGMLkAAIA/AACAP839sLxfN6U8D+wIvgmMkL59U8e9I1yAvAAAAAAAAAAAAPOrvIXj/bkgbmG3b74CsXQJcrqUk4U2AACAPwAAgD8arbE9CmdeudlPDLxhjbc1p6xWOgDWKLUAAIA/AACAPwCADT17bpW6xXBIvL5lcjWFi+23XbnWtAAAgD8AAIA/mryrvEjTibo+ruu6EzKktSLul7rXCgk6AACAPwAAgD/m72w9av20PzKSCT/Xw9q9ShuZPF8lRz4AAAAAAAAAAABf37wUcIW6zWd6ucRuYrTKqpI6yOOROAAAgD8AAIA/AJRBPLiGxbk1Vw+737CDtvmF4Dq2dPU1AACAPwAAgD+atKe94Wiauh05jrmmw320lWToOcM0pDgAAIA/AACAP2bkzryuQYe6vkIMvBZePbbhYpM6shiqNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGPbXyy2QXCMAWyUTegDjAF0lEdAkJYWznied3V9lChoBkdAcB2Q/5ckdGgHTWcBaAhHQJCYol0HQhR1fZQoaAZHQGJz3d9Dx9ZoB03oA2gIR0CQmyKvFFUidX2UKGgGR0BlhHPszEaVaAdN6ANoCEdAkKDNiDujRHV9lChoBkdAYv54FA3T/mgHTegDaAhHQJCi350r9VF1fZQoaAZHQGRVEtmL9/BoB03oA2gIR0CQrFbh3qzJdX2UKGgGR0Bm9W3KB/ZvaAdN6ANoCEdAkK46DPGACnV9lChoBkdAckgvvSc9XGgHTX0BaAhHQJCugwj+rEN1fZQoaAZHQGIc+/QBxPxoB03oA2gIR0CQsBIeYD1XdX2UKGgGR0Bja0uzyBkJaAdN6ANoCEdAkLA8P8Q7LnV9lChoBkdAZlq+evpyImgHTegDaAhHQJC4v9ZRsM11fZQoaAZHQGb0eA3DNyJoB03oA2gIR0CQwaHSF49pdX2UKGgGR0BjSy+evpyIaAdN6ANoCEdAkN10lVtGeHV9lChoBkdAZQNqynk1dmgHTegDaAhHQJDd3kOqebx1fZQoaAZHQGPl5lvqC6JoB03oA2gIR0CQ3s9RrJr+dX2UKGgGR0Bp7zQ3PzFuaAdN6ANoCEdAkN70pd8iOnV9lChoBkdAZoPMrVe8f2gHTegDaAhHQJDnkjiXIEN1fZQoaAZHQGgrvMSsbNtoB03oA2gIR0CQ69ha1TisdX2UKGgGR0BhJ6sIVuaXaAdN6ANoCEdAkO5CRKYiPnV9lChoBkdAQ/rhHbypaWgHS6ZoCEdAkPGmm1pj+nV9lChoBkdAX8E6RyOrAGgHTegDaAhHQJDzE41gpjN1fZQoaAZHQGElzGo73f1oB03oA2gIR0CQ9KkFwDNhdX2UKGgGR0BkOK/bj94vaAdN6ANoCEdAkP1++23KCHV9lChoBkdAZCuC0WuX/2gHTegDaAhHQJD/VaV2Rq51fZQoaAZHQGkEGA08/2VoB03oA2gIR0CQ/6U+cH4XdX2UKGgGR0BmXeKhtcfOaAdN6ANoCEdAkQEs5GSZB3V9lChoBkdAY8XiS7oStmgHTegDaAhHQJEBVTYNAkd1fZQoaAZHQGgh0qYqoZRoB03oA2gIR0CRDQdilSCOdX2UKGgGR0BkJxyfcvduaAdN6ANoCEdAkRXQ/HHWBnV9lChoBkdAZJgmoBJZn2gHTegDaAhHQJEtg/cFhXt1fZQoaAZHQGarVeKKpDNoB03oA2gIR0CRLeMpPRAsdX2UKGgGR0BEr3Wvr4WUaAdL/WgIR0CRLgslsxfwdX2UKGgGR0BlI69Gqgh9aAdN6ANoCEdAkS7CqU/wAnV9lChoBkdAZB2mUnogWGgHTegDaAhHQJEu3cTJyQx1fZQoaAZHQGf3s+3Ytg9oB03oA2gIR0CROv+sYEW7dX2UKGgGR0BhY6Fh5PdmaAdN6ANoCEdAkT4oLPUrkXV9lChoBkdAZFD8DSw4bWgHTegDaAhHQJFCfHEMspZ1fZQoaAZHQGhzYjbBXS1oB03oA2gIR0CRQ7KPn0TUdX2UKGgGR0Bl4qhL5AQhaAdN6ANoCEdAkUUchs67unV9lChoBkdAYcBk+X7cf2gHTegDaAhHQJFM6WGATZh1fZQoaAZHQGSmygf2bodoB03oA2gIR0CRTp+tKZlWdX2UKGgGR0Bo2Na0QbuMaAdN6ANoCEdAkU7gBcRlH3V9lChoBkdAZH5rUsnRcGgHTegDaAhHQJFQUBKcurZ1fZQoaAZHQGg7leF+NLloB03oA2gIR0CRUHbgjyFxdX2UKGgGR0BiyABcRlH0aAdN6ANoCEdAkWEmjoIOY3V9lChoBkdAZqbHlwLmZGgHTegDaAhHQJF7l8F6iTN1fZQoaAZHQGCCcXm/339oB03oA2gIR0CRe+rylN1ydX2UKGgGR0BlZiYiPhhqaAdN6ANoCEdAkXwOE25xznV9lChoBkdAXObK6nR9gGgHTegDaAhHQJF8niHZbpx1fZQoaAZHQGUWp+2E0zloB03oA2gIR0CRfLY02tMgdX2UKGgGR0BMSnXVbzK+aAdLz2gIR0CRhKH+6y0KdX2UKGgGR0BRGtUn5SFXaAdL0mgIR0CRhbKYAsCldX2UKGgGR0BmW98iOeasaAdN6ANoCEdAkYYLxAjY7XV9lChoBkdAZU7NX5nDi2gHTegDaAhHQJGH3gYP5Hp1fZQoaAZHQGMw/fwZwXJoB03oA2gIR0CRikdpZfUndX2UKGgGR0Bh1x1X/5tWaAdN6ANoCEdAkYtDGo73f3V9lChoBkdAY+DSBK+SKWgHTegDaAhHQJGMY2GZeAx1fZQoaAZHQGZFvUaya/hoB03oA2gIR0CRkyvzOHFhdX2UKGgGR0BmFcHbAUL2aAdN6ANoCEdAkZS5yyUs4HV9lChoBkdAX6GQzUI9kmgHTegDaAhHQJGU+IKtxMp1fZQoaAZHQGhEjHfdhy9oB03oA2gIR0CRlkclw97odX2UKGgGR0Bm6osCkoF3aAdN6ANoCEdAkZZqqwQlKXV9lChoBkdAY82bH6uW8mgHTegDaAhHQJGpw5tFa0R1fZQoaAZHQGNs7uDzyz5oB03oA2gIR0CRwYe9zwMIdX2UKGgGR0BmAapzcRDkaAdN6ANoCEdAkcGyOJcgQ3V9lChoBkdAZ6L9+gDifmgHTegDaAhHQJHCbcdo3711fZQoaAZHQGebQXZXdTJoB03oA2gIR0CRzDPbwjMWdX2UKGgGR0Bx1PE0iyIIaAdNsQNoCEdAkc0q/yoXK3V9lChoBkdAZ7uQ2dd3S2gHTegDaAhHQJHNgPH1e0J1fZQoaAZHQHGja+N96TpoB02bAmgIR0CRzdPI4lyBdX2UKGgGR0BlJ+OOsDGMaAdN6ANoCEdAkc3ihzvJBHV9lChoBkdAZTtIzWPLgWgHTegDaAhHQJHSF8zAN5N1fZQoaAZHQGEnkwFkhA5oB03oA2gIR0CR0336hxo7dX2UKGgGR0Bl10mShakiaAdN6ANoCEdAkdUME/0NBnV9lChoBkdAZMeMPz4DcWgHTegDaAhHQJHeyvB7/n51fZQoaAZHQGF1XwTdtVJoB03oA2gIR0CR4LP7el9CdX2UKGgGR0BhlhGKAJ9iaAdN6ANoCEdAkeJ9IXj2jHV9lChoBkdAZBRjS5RTCWgHTegDaAhHQJHipoIv8Il1fZQoaAZHQHHBmmDUVi5oB023AWgIR0CR5oGwzLwGdX2UKGgGR0BxLzRRdhRZaAdNZQJoCEdAke47rX18LXV9lChoBkdAZnd0Qsf7rWgHTegDaAhHQJHylWbPQfJ1fZQoaAZHQGfzWhZha1VoB03oA2gIR0CSC6t1p0wKdX2UKGgGR0BjnohIOH32aAdN6ANoCEdAkgvnGOuJUHV9lChoBkdAaC/uDzyz5WgHTegDaAhHQJIM6KJl8PZ1fZQoaAZHQGhpDIikftBoB03oA2gIR0CSGq4KQaJidX2UKGgGR0BfhlcUuctoaAdN6ANoCEdAkhsJzcRDkXV9lChoBkdAYbjsByS3b2gHTegDaAhHQJIbeHHmzSl1fZQoaAZHQGBIAGr0aqFoB03oA2gIR0CSIRxT850bdX2UKGgGR0Bl6xHww0wbaAdN6ANoCEdAkiJt2Pkq+nV9lChoBkdAYCT+H8CPqGgHTegDaAhHQJIj7ot+TeR1fZQoaAZHQGAW1wYLsrxoB03oA2gIR0CSLGIhhYvGdX2UKGgGR0BAWwvxpcoqaAdL2GgIR0CSLWCBwuM/dX2UKGgGR0Bm9fPeHi3oaAdN6ANoCEdAki4qXKKYRnV9lChoBkdAXkfIBBAv+WgHTegDaAhHQJIv7oIOYpl1fZQoaAZHQGYf/lp48lpoB03oA2gIR0CSMBYV6/qPdX2UKGgGR0Bm+b2L5ylvaAdN6ANoCEdAkjPycPOIInV9lChoBkdAYR4d2gWadGgHTegDaAhHQJI7jNIK+i91fZQoaAZHQGTGGLLpzLhoB03oA2gIR0CSQUduYQardX2UKGgGR0BjQYskIHC5aAdN6ANoCEdAkkn/wAlv63V9lChoBkdAZCgE9Mbm2mgHTegDaAhHQJJKLgl4TsZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}