--- license: other datasets: - ehartford/wizard_vicuna_70k_unfiltered --- # Overview Fine-tuned [Llama-2 13B](https://huggingface.co/TheBloke/Llama-2-13B-fp16) with an uncensored/unfiltered Wizard-Vicuna conversation dataset [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered). Used QLoRA for fine-tuning. Trained for one epoch on a two 24GB GPU (NVIDIA RTX 3090) instance, took ~26.5 hours to train. ``` {'train_runtime': 95229.7197, 'train_samples_per_second': 0.363, 'train_steps_per_second': 0.091, 'train_loss': 0.5828390517308127, 'epoch': 1.0} 100%|██████████████████████████████████████████████████████████████████████████████████████████████| 8649/8649 [26:27:09<00:00, 11.01s/it] Training complete, adapter model saved in models//llama2_13b_chat_uncensored_adapter ``` The version here is the fp16 HuggingFace model. ## GGML & GPTQ versions Thanks to [TheBloke](https://huggingface.co/TheBloke), he has created the GGML and GPTQ versions: * https://huggingface.co/TheBloke/llama2_13b_chat_uncensored-GGML * https://huggingface.co/TheBloke/llama2_13b_chat_uncensored-GPTQ # Prompt style The model was trained with the following prompt style: ``` ### HUMAN: Hello ### RESPONSE: Hi, how are you? ### HUMAN: I'm fine. ### RESPONSE: How can I help you? ... ``` # Training code Code used to train the model is available [here](https://github.com/georgesung/llm_qlora). To reproduce the results: ``` git clone https://github.com/georgesung/llm_qlora cd llm_qlora pip install -r requirements.txt python train.py configs/llama2_13b_chat_uncensored.yaml ``` # Fine-tuning guide https://georgesung.github.io/ai/qlora-ift/