File size: 4,484 Bytes
6d0d474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: mit
base_model: arthurmluz/ptt5-xlsumm-30epochs
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: ptt5-xlsumm-cstnews-1024
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ptt5-xlsumm-cstnews-1024

This model is a fine-tuned version of [arthurmluz/ptt5-xlsumm-30epochs](https://huggingface.co/arthurmluz/ptt5-xlsumm-30epochs) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2582
- Rouge1: 0.2812
- Rouge2: 0.213
- Rougel: 0.2582
- Rougelsum: 0.2747
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 47   | 1.4425          | 0.2155 | 0.1096 | 0.1749 | 0.2026    | 19.0    |
| No log        | 2.0   | 94   | 1.3388          | 0.2385 | 0.1386 | 0.1902 | 0.2251    | 19.0    |
| No log        | 3.0   | 141  | 1.2907          | 0.2491 | 0.1664 | 0.2162 | 0.2399    | 19.0    |
| No log        | 4.0   | 188  | 1.2664          | 0.2588 | 0.1828 | 0.2282 | 0.2497    | 19.0    |
| 1.6936        | 5.0   | 235  | 1.2464          | 0.2636 | 0.1898 | 0.2363 | 0.256     | 19.0    |
| 1.6936        | 6.0   | 282  | 1.2430          | 0.2707 | 0.2005 | 0.2454 | 0.2645    | 19.0    |
| 1.6936        | 7.0   | 329  | 1.2320          | 0.2717 | 0.2023 | 0.2463 | 0.2654    | 19.0    |
| 1.6936        | 8.0   | 376  | 1.2276          | 0.2733 | 0.2054 | 0.2461 | 0.2692    | 19.0    |
| 1.2963        | 9.0   | 423  | 1.2237          | 0.2753 | 0.2114 | 0.2482 | 0.2701    | 19.0    |
| 1.2963        | 10.0  | 470  | 1.2225          | 0.2784 | 0.2143 | 0.2506 | 0.2732    | 19.0    |
| 1.2963        | 11.0  | 517  | 1.2247          | 0.2753 | 0.2117 | 0.2495 | 0.2702    | 19.0    |
| 1.2963        | 12.0  | 564  | 1.2244          | 0.2792 | 0.2137 | 0.2533 | 0.2738    | 19.0    |
| 1.1352        | 13.0  | 611  | 1.2285          | 0.2797 | 0.2125 | 0.2542 | 0.2742    | 19.0    |
| 1.1352        | 14.0  | 658  | 1.2287          | 0.2751 | 0.2096 | 0.2507 | 0.2684    | 19.0    |
| 1.1352        | 15.0  | 705  | 1.2325          | 0.2727 | 0.2089 | 0.2503 | 0.2672    | 19.0    |
| 1.1352        | 16.0  | 752  | 1.2330          | 0.2769 | 0.2143 | 0.2552 | 0.2711    | 19.0    |
| 1.1352        | 17.0  | 799  | 1.2353          | 0.2769 | 0.2143 | 0.2552 | 0.2711    | 19.0    |
| 1.0196        | 18.0  | 846  | 1.2352          | 0.2831 | 0.2176 | 0.261  | 0.2771    | 19.0    |
| 1.0196        | 19.0  | 893  | 1.2400          | 0.2838 | 0.2184 | 0.2611 | 0.2771    | 19.0    |
| 1.0196        | 20.0  | 940  | 1.2406          | 0.2838 | 0.2184 | 0.2611 | 0.2771    | 19.0    |
| 1.0196        | 21.0  | 987  | 1.2457          | 0.2771 | 0.2109 | 0.2554 | 0.2711    | 19.0    |
| 0.912         | 22.0  | 1034 | 1.2471          | 0.2771 | 0.2109 | 0.2554 | 0.2711    | 19.0    |
| 0.912         | 23.0  | 1081 | 1.2499          | 0.278  | 0.2094 | 0.2552 | 0.2714    | 19.0    |
| 0.912         | 24.0  | 1128 | 1.2508          | 0.278  | 0.2094 | 0.2552 | 0.2714    | 19.0    |
| 0.912         | 25.0  | 1175 | 1.2541          | 0.282  | 0.2139 | 0.2588 | 0.275     | 19.0    |
| 0.8667        | 26.0  | 1222 | 1.2563          | 0.282  | 0.2139 | 0.2588 | 0.275     | 19.0    |
| 0.8667        | 27.0  | 1269 | 1.2569          | 0.2812 | 0.213  | 0.2582 | 0.2747    | 19.0    |
| 0.8667        | 28.0  | 1316 | 1.2577          | 0.2812 | 0.213  | 0.2582 | 0.2747    | 19.0    |
| 0.8667        | 29.0  | 1363 | 1.2582          | 0.2812 | 0.213  | 0.2582 | 0.2747    | 19.0    |
| 0.8561        | 30.0  | 1410 | 1.2582          | 0.2812 | 0.213  | 0.2582 | 0.2747    | 19.0    |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.1