File size: 4,480 Bytes
e4eca9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: mit
base_model: arthurmluz/ptt5-xlsumm-30epochs
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: ptt5-xlsumm-gptextsum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ptt5-xlsumm-gptextsum

This model is a fine-tuned version of [arthurmluz/ptt5-xlsumm-30epochs](https://huggingface.co/arthurmluz/ptt5-xlsumm-30epochs) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2170
- Rouge1: 0.4041
- Rouge2: 0.207
- Rougel: 0.3276
- Rougelsum: 0.3632
- Gen Len: 18.875

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 70   | 2.3635          | 0.318  | 0.1516 | 0.2478 | 0.2858    | 18.675  |
| No log        | 2.0   | 140  | 2.1986          | 0.3333 | 0.1619 | 0.268  | 0.3003    | 18.7    |
| 2.3332        | 3.0   | 210  | 2.1209          | 0.3244 | 0.1429 | 0.2551 | 0.293     | 18.5    |
| 2.3332        | 4.0   | 280  | 2.0820          | 0.3448 | 0.1618 | 0.2703 | 0.3098    | 18.5    |
| 2.3332        | 5.0   | 350  | 2.0565          | 0.3502 | 0.1769 | 0.2756 | 0.3135    | 18.75   |
| 1.785         | 6.0   | 420  | 2.0446          | 0.3541 | 0.1808 | 0.2734 | 0.3169    | 18.825  |
| 1.785         | 7.0   | 490  | 2.0435          | 0.3628 | 0.1867 | 0.2843 | 0.3228    | 18.75   |
| 1.785         | 8.0   | 560  | 2.0482          | 0.3679 | 0.1886 | 0.2918 | 0.3314    | 18.725  |
| 1.4946        | 9.0   | 630  | 2.0481          | 0.3741 | 0.1869 | 0.2949 | 0.3336    | 18.85   |
| 1.4946        | 10.0  | 700  | 2.0494          | 0.379  | 0.1979 | 0.3012 | 0.338     | 18.8    |
| 1.4946        | 11.0  | 770  | 2.0602          | 0.3786 | 0.196  | 0.3045 | 0.3342    | 18.8    |
| 1.2836        | 12.0  | 840  | 2.0691          | 0.3749 | 0.1971 | 0.3012 | 0.3352    | 18.85   |
| 1.2836        | 13.0  | 910  | 2.0795          | 0.3789 | 0.1953 | 0.3082 | 0.3371    | 18.8    |
| 1.2836        | 14.0  | 980  | 2.0898          | 0.3809 | 0.196  | 0.3052 | 0.3378    | 18.825  |
| 1.1472        | 15.0  | 1050 | 2.1076          | 0.3904 | 0.1979 | 0.3137 | 0.3462    | 18.875  |
| 1.1472        | 16.0  | 1120 | 2.1109          | 0.3905 | 0.1929 | 0.3101 | 0.3436    | 18.875  |
| 1.1472        | 17.0  | 1190 | 2.1253          | 0.4046 | 0.2029 | 0.3242 | 0.3594    | 18.875  |
| 1.0175        | 18.0  | 1260 | 2.1418          | 0.4093 | 0.2074 | 0.3255 | 0.3614    | 18.875  |
| 1.0175        | 19.0  | 1330 | 2.1578          | 0.4065 | 0.213  | 0.3289 | 0.363     | 18.875  |
| 0.9398        | 20.0  | 1400 | 2.1593          | 0.4125 | 0.2197 | 0.333  | 0.3716    | 18.875  |
| 0.9398        | 21.0  | 1470 | 2.1663          | 0.4091 | 0.2111 | 0.3282 | 0.368     | 18.875  |
| 0.9398        | 22.0  | 1540 | 2.1775          | 0.4081 | 0.2111 | 0.3301 | 0.366     | 18.875  |
| 0.8644        | 23.0  | 1610 | 2.1889          | 0.4015 | 0.206  | 0.3274 | 0.3613    | 18.875  |
| 0.8644        | 24.0  | 1680 | 2.1932          | 0.4015 | 0.206  | 0.3274 | 0.3613    | 18.875  |
| 0.8644        | 25.0  | 1750 | 2.2016          | 0.4075 | 0.2089 | 0.331  | 0.3672    | 18.875  |
| 0.8385        | 26.0  | 1820 | 2.2058          | 0.4082 | 0.2087 | 0.33   | 0.3688    | 18.875  |
| 0.8385        | 27.0  | 1890 | 2.2089          | 0.4075 | 0.2089 | 0.331  | 0.3672    | 18.875  |
| 0.8385        | 28.0  | 1960 | 2.2131          | 0.4061 | 0.2079 | 0.3286 | 0.3651    | 18.875  |
| 0.7999        | 29.0  | 2030 | 2.2161          | 0.4061 | 0.2079 | 0.3286 | 0.3651    | 18.875  |
| 0.7999        | 30.0  | 2100 | 2.2170          | 0.4041 | 0.207  | 0.3276 | 0.3632    | 18.875  |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.1