--- language: - lv license: apache-2.0 base_model: openai/whisper-medium tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer model-index: - name: Whisper medium LV - Arturs Logins results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.1 type: mozilla-foundation/common_voice_16_1 config: lv split: test args: 'config: lv, split: test' metrics: - name: Wer type: wer value: 15.611516648123525 --- # Whisper medium LV - Arturs Logins This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.2088 - Wer: 15.6115 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 0.06 | 200 | 1.1684 | 30.5962 | | 2.1727 | 0.12 | 400 | 0.3890 | 28.8540 | | 0.6371 | 0.19 | 600 | 0.3618 | 27.1689 | | 0.5874 | 0.25 | 800 | 0.3285 | 25.4756 | | 0.5186 | 0.31 | 1000 | 0.3187 | 24.5665 | | 0.5186 | 0.37 | 1200 | 0.3037 | 23.3372 | | 0.4772 | 0.44 | 1400 | 0.2848 | 21.4594 | | 0.4575 | 0.5 | 1600 | 0.2782 | 21.2966 | | 0.4541 | 0.56 | 1800 | 0.2674 | 20.6670 | | 0.4098 | 0.62 | 2000 | 0.2599 | 19.8366 | | 0.4098 | 0.69 | 2200 | 0.2490 | 19.0877 | | 0.4028 | 0.75 | 2400 | 0.2436 | 18.6589 | | 0.404 | 0.81 | 2600 | 0.2383 | 18.4310 | | 0.3723 | 0.87 | 2800 | 0.2314 | 17.7254 | | 0.3578 | 0.94 | 3000 | 0.2299 | 17.9832 | | 0.3578 | 1.0 | 3200 | 0.2208 | 17.3265 | | 0.331 | 1.06 | 3400 | 0.2258 | 17.1583 | | 0.1796 | 1.12 | 3600 | 0.2229 | 16.9548 | | 0.1835 | 1.19 | 3800 | 0.2201 | 16.8245 | | 0.1684 | 1.25 | 4000 | 0.2172 | 16.4934 | | 0.1684 | 1.31 | 4200 | 0.2134 | 16.0457 | | 0.1701 | 1.37 | 4400 | 0.2109 | 15.8557 | | 0.172 | 1.44 | 4600 | 0.2099 | 15.7391 | | 0.1709 | 1.5 | 4800 | 0.2094 | 15.6169 | | 0.1704 | 1.56 | 5000 | 0.2088 | 15.6115 | ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.0.1 - Datasets 2.18.0 - Tokenizers 0.15.2