Create metrics.log
Browse files- metrics.log +155 -0
metrics.log
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Subset ['m0'] accuracies
|
2 |
+
{'m1': 0.6354, 'm2': 0.592, 'm3': 0.6089, 'm4': 0.4787}
|
3 |
+
Mean subset ['m0'] accuracies : 0.57875
|
4 |
+
Subset ['m1'] accuracies
|
5 |
+
{'m0': 0.5028, 'm2': 0.6489, 'm3': 0.6556, 'm4': 0.5353}
|
6 |
+
Mean subset ['m1'] accuracies : 0.58565
|
7 |
+
Subset ['m2'] accuracies
|
8 |
+
{'m0': 0.4902, 'm1': 0.6807, 'm3': 0.6379, 'm4': 0.5249}
|
9 |
+
Mean subset ['m2'] accuracies : 0.5834250000000001
|
10 |
+
Subset ['m3'] accuracies
|
11 |
+
{'m0': 0.5151, 'm1': 0.7395, 'm2': 0.6902, 'm4': 0.5657}
|
12 |
+
Mean subset ['m3'] accuracies : 0.627625
|
13 |
+
Subset ['m4'] accuracies
|
14 |
+
{'m0': 0.4535, 'm1': 0.6194, 'm2': 0.5888, 'm3': 0.5973}
|
15 |
+
Mean subset ['m4'] accuracies : 0.56475
|
16 |
+
Subset ['m0', 'm1'] accuracies
|
17 |
+
{'m2': 0.7575, 'm3': 0.797, 'm4': 0.6147}
|
18 |
+
Mean subset ['m0', 'm1'] accuracies : 0.7230666666666666
|
19 |
+
Subset ['m0', 'm2'] accuracies
|
20 |
+
{'m1': 0.7961, 'm3': 0.7815, 'm4': 0.6085}
|
21 |
+
Mean subset ['m0', 'm2'] accuracies : 0.7286999999999999
|
22 |
+
Subset ['m0', 'm3'] accuracies
|
23 |
+
{'m1': 0.8437, 'm2': 0.7746, 'm4': 0.618}
|
24 |
+
Mean subset ['m0', 'm3'] accuracies : 0.7454333333333333
|
25 |
+
Subset ['m0', 'm4'] accuracies
|
26 |
+
{'m1': 0.787, 'm2': 0.7183, 'm3': 0.7723}
|
27 |
+
Mean subset ['m0', 'm4'] accuracies : 0.7592
|
28 |
+
Subset ['m1', 'm2'] accuracies
|
29 |
+
{'m0': 0.5982, 'm3': 0.8002, 'm4': 0.6311}
|
30 |
+
Mean subset ['m1', 'm2'] accuracies : 0.6765
|
31 |
+
Subset ['m1', 'm3'] accuracies
|
32 |
+
{'m0': 0.61, 'm2': 0.7933, 'm4': 0.642}
|
33 |
+
Mean subset ['m1', 'm3'] accuracies : 0.6817666666666667
|
34 |
+
Subset ['m1', 'm4'] accuracies
|
35 |
+
{'m0': 0.5827, 'm2': 0.7571, 'm3': 0.7969}
|
36 |
+
Mean subset ['m1', 'm4'] accuracies : 0.7122333333333333
|
37 |
+
Subset ['m2', 'm3'] accuracies
|
38 |
+
{'m0': 0.6135, 'm1': 0.8535, 'm4': 0.6411}
|
39 |
+
Mean subset ['m2', 'm3'] accuracies : 0.7027000000000001
|
40 |
+
Subset ['m2', 'm4'] accuracies
|
41 |
+
{'m0': 0.5865, 'm1': 0.7976, 'm3': 0.7838}
|
42 |
+
Mean subset ['m2', 'm4'] accuracies : 0.7226333333333335
|
43 |
+
Subset ['m3', 'm4'] accuracies
|
44 |
+
{'m0': 0.5963, 'm1': 0.8431, 'm2': 0.7831}
|
45 |
+
Mean subset ['m3', 'm4'] accuracies : 0.7408333333333333
|
46 |
+
Subset ['m0', 'm1', 'm2'] accuracies
|
47 |
+
{'m3': 0.884, 'm4': 0.6554}
|
48 |
+
Mean subset ['m0', 'm1', 'm2'] accuracies : 0.7697
|
49 |
+
Subset ['m0', 'm1', 'm3'] accuracies
|
50 |
+
{'m2': 0.8448, 'm4': 0.6528}
|
51 |
+
Mean subset ['m0', 'm1', 'm3'] accuracies : 0.7488
|
52 |
+
Subset ['m0', 'm1', 'm4'] accuracies
|
53 |
+
{'m2': 0.8262, 'm3': 0.8799}
|
54 |
+
Mean subset ['m0', 'm1', 'm4'] accuracies : 0.8530500000000001
|
55 |
+
Subset ['m0', 'm2', 'm3'] accuracies
|
56 |
+
{'m1': 0.9102, 'm4': 0.6506}
|
57 |
+
Mean subset ['m0', 'm2', 'm3'] accuracies : 0.7804
|
58 |
+
Subset ['m0'] accuracies
|
59 |
+
{'m1': 0.634, 'm2': 0.589, 'm3': 0.6064, 'm4': 0.4893}
|
60 |
+
Mean subset ['m0'] accuracies : 0.5796749999999999
|
61 |
+
Subset ['m1'] accuracies
|
62 |
+
{'m0': 0.4946, 'm2': 0.6424, 'm3': 0.6501, 'm4': 0.5433}
|
63 |
+
Mean subset ['m1'] accuracies : 0.5826
|
64 |
+
Subset ['m2'] accuracies
|
65 |
+
{'m0': 0.4796, 'm1': 0.6785, 'm3': 0.6294, 'm4': 0.5215}
|
66 |
+
Mean subset ['m2'] accuracies : 0.57725
|
67 |
+
Subset ['m3'] accuracies
|
68 |
+
{'m0': 0.5166, 'm1': 0.7344, 'm2': 0.68, 'm4': 0.5639}
|
69 |
+
Mean subset ['m3'] accuracies : 0.623725
|
70 |
+
Subset ['m4'] accuracies
|
71 |
+
{'m0': 0.4515, 'm1': 0.6235, 'm2': 0.5899, 'm3': 0.602}
|
72 |
+
Mean subset ['m4'] accuracies : 0.566725
|
73 |
+
Subset ['m0', 'm1'] accuracies
|
74 |
+
{'m2': 0.7512, 'm3': 0.794, 'm4': 0.618}
|
75 |
+
Mean subset ['m0', 'm1'] accuracies : 0.7210666666666666
|
76 |
+
Subset ['m0', 'm2'] accuracies
|
77 |
+
{'m1': 0.7975, 'm3': 0.7821, 'm4': 0.6162}
|
78 |
+
Mean subset ['m0', 'm2'] accuracies : 0.7319333333333334
|
79 |
+
Subset ['m0', 'm3'] accuracies
|
80 |
+
{'m1': 0.8415, 'm2': 0.7741, 'm4': 0.6172}
|
81 |
+
Mean subset ['m0', 'm3'] accuracies : 0.7442666666666667
|
82 |
+
Subset ['m0', 'm4'] accuracies
|
83 |
+
{'m1': 0.7785, 'm2': 0.7208, 'm3': 0.7635}
|
84 |
+
Mean subset ['m0', 'm4'] accuracies : 0.7542666666666666
|
85 |
+
Subset ['m1', 'm2'] accuracies
|
86 |
+
{'m0': 0.6056, 'm3': 0.8028, 'm4': 0.636}
|
87 |
+
Mean subset ['m1', 'm2'] accuracies : 0.6814666666666667
|
88 |
+
Subset ['m1', 'm3'] accuracies
|
89 |
+
{'m0': 0.616, 'm2': 0.7975, 'm4': 0.6367}
|
90 |
+
Mean subset ['m1', 'm3'] accuracies : 0.6834000000000001
|
91 |
+
Subset ['m1', 'm4'] accuracies
|
92 |
+
{'m0': 0.5796, 'm2': 0.7538, 'm3': 0.7965}
|
93 |
+
Mean subset ['m1', 'm4'] accuracies : 0.7099666666666667
|
94 |
+
Subset ['m2', 'm3'] accuracies
|
95 |
+
{'m0': 0.6101, 'm1': 0.842, 'm4': 0.6407}
|
96 |
+
Mean subset ['m2', 'm3'] accuracies : 0.6976
|
97 |
+
Subset ['m2', 'm4'] accuracies
|
98 |
+
{'m0': 0.5831, 'm1': 0.7914, 'm3': 0.7776}
|
99 |
+
Mean subset ['m2', 'm4'] accuracies : 0.7173666666666666
|
100 |
+
Subset ['m3', 'm4'] accuracies
|
101 |
+
{'m0': 0.5932, 'm1': 0.8385, 'm2': 0.7796}
|
102 |
+
Mean subset ['m3', 'm4'] accuracies : 0.7371
|
103 |
+
Subset ['m0', 'm1', 'm2'] accuracies
|
104 |
+
{'m3': 0.8873, 'm4': 0.6525}
|
105 |
+
Mean subset ['m0', 'm1', 'm2'] accuracies : 0.7699
|
106 |
+
Subset ['m0', 'm1', 'm3'] accuracies
|
107 |
+
{'m2': 0.8437, 'm4': 0.6521}
|
108 |
+
Mean subset ['m0', 'm1', 'm3'] accuracies : 0.7479
|
109 |
+
Subset ['m0', 'm1', 'm4'] accuracies
|
110 |
+
{'m2': 0.8179, 'm3': 0.8803}
|
111 |
+
Mean subset ['m0', 'm1', 'm4'] accuracies : 0.8491
|
112 |
+
Subset ['m0', 'm2', 'm3'] accuracies
|
113 |
+
{'m1': 0.9097, 'm4': 0.6601}
|
114 |
+
Mean subset ['m0', 'm2', 'm3'] accuracies : 0.7848999999999999
|
115 |
+
Subset ['m0', 'm2', 'm4'] accuracies
|
116 |
+
{'m1': 0.8857, 'm3': 0.8755}
|
117 |
+
Mean subset ['m0', 'm2', 'm4'] accuracies : 0.8806
|
118 |
+
Subset ['m0', 'm3', 'm4'] accuracies
|
119 |
+
{'m1': 0.9037, 'm2': 0.8349}
|
120 |
+
Mean subset ['m0', 'm3', 'm4'] accuracies : 0.8693
|
121 |
+
Subset ['m1', 'm2', 'm3'] accuracies
|
122 |
+
{'m0': 0.6507, 'm4': 0.6671}
|
123 |
+
Mean subset ['m1', 'm2', 'm3'] accuracies : 0.6589
|
124 |
+
Subset ['m1', 'm2', 'm4'] accuracies
|
125 |
+
{'m0': 0.6391, 'm3': 0.8868}
|
126 |
+
Mean subset ['m1', 'm2', 'm4'] accuracies : 0.76295
|
127 |
+
Subset ['m1', 'm3', 'm4'] accuracies
|
128 |
+
{'m0': 0.6433, 'm2': 0.8492}
|
129 |
+
Mean subset ['m1', 'm3', 'm4'] accuracies : 0.74625
|
130 |
+
Subset ['m2', 'm3', 'm4'] accuracies
|
131 |
+
{'m0': 0.6368, 'm1': 0.9056}
|
132 |
+
Mean subset ['m2', 'm3', 'm4'] accuracies : 0.7712
|
133 |
+
Subset ['m0', 'm1', 'm2', 'm3'] accuracies
|
134 |
+
{'m4': 0.6559}
|
135 |
+
Mean subset ['m0', 'm1', 'm2', 'm3'] accuracies : 0.6559
|
136 |
+
Subset ['m0', 'm1', 'm2', 'm4'] accuracies
|
137 |
+
{'m3': 0.9293}
|
138 |
+
Mean subset ['m0', 'm1', 'm2', 'm4'] accuracies : 0.9293
|
139 |
+
Subset ['m0', 'm1', 'm3', 'm4'] accuracies
|
140 |
+
{'m2': 0.8774}
|
141 |
+
Mean subset ['m0', 'm1', 'm3', 'm4'] accuracies : 0.8774
|
142 |
+
Subset ['m0', 'm2', 'm3', 'm4'] accuracies
|
143 |
+
{'m1': 0.9395}
|
144 |
+
Mean subset ['m0', 'm2', 'm3', 'm4'] accuracies : 0.9395
|
145 |
+
Subset ['m1', 'm2', 'm3', 'm4'] accuracies
|
146 |
+
{'m0': 0.653}
|
147 |
+
Mean subset ['m1', 'm2', 'm3', 'm4'] accuracies : 0.653
|
148 |
+
Conditional accuracies for 1 modalities : 0.5859949999999999 +- 0.01961035058330165
|
149 |
+
Conditional accuracies for 2 modalities : 0.7178433333333334 +- 0.023635261087338683
|
150 |
+
Conditional accuracies for 3 modalities : 0.7841 +- 0.06326958590033602
|
151 |
+
Conditional accuracies for 4 modalities : 0.8110199999999999 +- 0.12956551084297085
|
152 |
+
Joint coherence : 0.03179999813437462
|
153 |
+
Uploading JNF model to asenella/mmnistJNF_config2_ repo in HF hub...
|
154 |
+
Creating mmnistJNF_config2_ in the HF hub since it does not exist...
|
155 |
+
Successfully created mmnistJNF_config2_ in the HF hub!
|