|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import math |
|
import warnings |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import PIL |
|
import torch |
|
import torchvision.transforms.functional as TF |
|
from diffusers.configuration_utils import ConfigMixin, FrozenDict, register_to_config |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion.safety_checker import ( |
|
StableDiffusionSafetyChecker, |
|
) |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import deprecate, is_accelerate_available, logging |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from packaging import version |
|
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class CLIPCameraProjection(ModelMixin, ConfigMixin): |
|
""" |
|
A Projection layer for CLIP embedding and camera embedding. |
|
|
|
Parameters: |
|
embedding_dim (`int`, *optional*, defaults to 768): The dimension of the model input `clip_embed` |
|
additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the |
|
projected `hidden_states`. The actual length of the used `hidden_states` is `num_embeddings + |
|
additional_embeddings`. |
|
""" |
|
|
|
@register_to_config |
|
def __init__(self, embedding_dim: int = 768, additional_embeddings: int = 4): |
|
super().__init__() |
|
self.embedding_dim = embedding_dim |
|
self.additional_embeddings = additional_embeddings |
|
|
|
self.input_dim = self.embedding_dim + self.additional_embeddings |
|
self.output_dim = self.embedding_dim |
|
|
|
self.proj = torch.nn.Linear(self.input_dim, self.output_dim) |
|
|
|
def forward( |
|
self, |
|
embedding: torch.FloatTensor, |
|
): |
|
""" |
|
The [`PriorTransformer`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.FloatTensor` of shape `(batch_size, input_dim)`): |
|
The currently input embeddings. |
|
|
|
Returns: |
|
The output embedding projection (`torch.FloatTensor` of shape `(batch_size, output_dim)`). |
|
""" |
|
proj_embedding = self.proj(embedding) |
|
return proj_embedding |
|
|
|
|
|
class Zero123Pipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline to generate variations from an input image using Stable Diffusion. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
image_encoder ([`CLIPVisionModelWithProjection`]): |
|
Frozen CLIP image-encoder. Stable Diffusion Image Variation uses the vision portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection), |
|
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. |
|
feature_extractor ([`CLIPImageProcessor`]): |
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`. |
|
""" |
|
|
|
|
|
_optional_components = ["safety_checker"] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
image_encoder: CLIPVisionModelWithProjection, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
clip_camera_projection: CLIPCameraProjection, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__() |
|
|
|
if safety_checker is None and requires_safety_checker: |
|
logger.warn( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
raise ValueError( |
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
) |
|
|
|
is_unet_version_less_0_9_0 = hasattr( |
|
unet.config, "_diffusers_version" |
|
) and version.parse( |
|
version.parse(unet.config._diffusers_version).base_version |
|
) < version.parse( |
|
"0.9.0.dev0" |
|
) |
|
is_unet_sample_size_less_64 = ( |
|
hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 |
|
) |
|
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: |
|
deprecation_message = ( |
|
"The configuration file of the unet has set the default `sample_size` to smaller than" |
|
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" |
|
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" |
|
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" |
|
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" |
|
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" |
|
" in the config might lead to incorrect results in future versions. If you have downloaded this" |
|
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" |
|
" the `unet/config.json` file" |
|
) |
|
deprecate( |
|
"sample_size<64", "1.0.0", deprecation_message, standard_warn=False |
|
) |
|
new_config = dict(unet.config) |
|
new_config["sample_size"] = 64 |
|
unet._internal_dict = FrozenDict(new_config) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
image_encoder=image_encoder, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
clip_camera_projection=clip_camera_projection, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, |
|
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a |
|
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. |
|
""" |
|
if is_accelerate_available(): |
|
from accelerate import cpu_offload |
|
else: |
|
raise ImportError("Please install accelerate via `pip install accelerate`") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
for cpu_offloaded_model in [ |
|
self.unet, |
|
self.image_encoder, |
|
self.vae, |
|
self.safety_checker, |
|
]: |
|
if cpu_offloaded_model is not None: |
|
cpu_offload(cpu_offloaded_model, device) |
|
|
|
@property |
|
|
|
def _execution_device(self): |
|
r""" |
|
Returns the device on which the pipeline's models will be executed. After calling |
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module |
|
hooks. |
|
""" |
|
if not hasattr(self.unet, "_hf_hook"): |
|
return self.device |
|
for module in self.unet.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
def _encode_image( |
|
self, |
|
image, |
|
elevation, |
|
azimuth, |
|
distance, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
clip_image_embeddings=None, |
|
image_camera_embeddings=None, |
|
): |
|
dtype = next(self.image_encoder.parameters()).dtype |
|
|
|
if image_camera_embeddings is None: |
|
if image is None: |
|
assert clip_image_embeddings is not None |
|
image_embeddings = clip_image_embeddings.to(device=device, dtype=dtype) |
|
else: |
|
if not isinstance(image, torch.Tensor): |
|
image = self.feature_extractor( |
|
images=image, return_tensors="pt" |
|
).pixel_values |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
image_embeddings = self.image_encoder(image).image_embeds |
|
image_embeddings = image_embeddings.unsqueeze(1) |
|
|
|
bs_embed, seq_len, _ = image_embeddings.shape |
|
|
|
if isinstance(elevation, float): |
|
elevation = torch.as_tensor( |
|
[elevation] * bs_embed, dtype=dtype, device=device |
|
) |
|
if isinstance(azimuth, float): |
|
azimuth = torch.as_tensor( |
|
[azimuth] * bs_embed, dtype=dtype, device=device |
|
) |
|
if isinstance(distance, float): |
|
distance = torch.as_tensor( |
|
[distance] * bs_embed, dtype=dtype, device=device |
|
) |
|
|
|
camera_embeddings = torch.stack( |
|
[ |
|
torch.deg2rad(elevation), |
|
torch.sin(torch.deg2rad(azimuth)), |
|
torch.cos(torch.deg2rad(azimuth)), |
|
distance, |
|
], |
|
dim=-1, |
|
)[:, None, :] |
|
|
|
image_embeddings = torch.cat([image_embeddings, camera_embeddings], dim=-1) |
|
|
|
|
|
image_embeddings = self.clip_camera_projection(image_embeddings) |
|
else: |
|
image_embeddings = image_camera_embeddings.to(device=device, dtype=dtype) |
|
bs_embed, seq_len, _ = image_embeddings.shape |
|
|
|
|
|
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) |
|
image_embeddings = image_embeddings.view( |
|
bs_embed * num_images_per_prompt, seq_len, -1 |
|
) |
|
|
|
if do_classifier_free_guidance: |
|
negative_prompt_embeds = torch.zeros_like(image_embeddings) |
|
|
|
|
|
|
|
|
|
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) |
|
|
|
return image_embeddings |
|
|
|
|
|
def run_safety_checker(self, image, device, dtype): |
|
if self.safety_checker is None: |
|
has_nsfw_concept = None |
|
else: |
|
if torch.is_tensor(image): |
|
feature_extractor_input = self.image_processor.postprocess( |
|
image, output_type="pil" |
|
) |
|
else: |
|
feature_extractor_input = self.image_processor.numpy_to_pil(image) |
|
safety_checker_input = self.feature_extractor( |
|
feature_extractor_input, return_tensors="pt" |
|
).to(device) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
) |
|
return image, has_nsfw_concept |
|
|
|
|
|
def decode_latents(self, latents): |
|
warnings.warn( |
|
"The decode_latents method is deprecated and will be removed in a future version. Please" |
|
" use VaeImageProcessor instead", |
|
FutureWarning, |
|
) |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return image |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set( |
|
inspect.signature(self.scheduler.step).parameters.keys() |
|
) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set( |
|
inspect.signature(self.scheduler.step).parameters.keys() |
|
) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs(self, image, height, width, callback_steps): |
|
|
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError( |
|
f"`height` and `width` have to be divisible by 8 but are {height} and {width}." |
|
) |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None |
|
and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor( |
|
shape, generator=generator, device=device, dtype=dtype |
|
) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def _get_latent_model_input( |
|
self, |
|
latents: torch.FloatTensor, |
|
image: Optional[ |
|
Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor] |
|
], |
|
num_images_per_prompt: int, |
|
do_classifier_free_guidance: bool, |
|
image_latents: Optional[torch.FloatTensor] = None, |
|
): |
|
if isinstance(image, PIL.Image.Image): |
|
image_pt = TF.to_tensor(image).unsqueeze(0).to(latents) |
|
elif isinstance(image, list): |
|
image_pt = torch.stack([TF.to_tensor(img) for img in image], dim=0).to( |
|
latents |
|
) |
|
elif isinstance(image, torch.Tensor): |
|
image_pt = image |
|
else: |
|
image_pt = None |
|
|
|
if image_pt is None: |
|
assert image_latents is not None |
|
image_pt = image_latents.repeat_interleave(num_images_per_prompt, dim=0) |
|
else: |
|
image_pt = image_pt * 2.0 - 1.0 |
|
|
|
|
|
image_pt = self.vae.encode(image_pt).latent_dist.mode() |
|
image_pt = image_pt.repeat_interleave(num_images_per_prompt, dim=0) |
|
if do_classifier_free_guidance: |
|
latent_model_input = torch.cat( |
|
[ |
|
torch.cat([latents, latents], dim=0), |
|
torch.cat([torch.zeros_like(image_pt), image_pt], dim=0), |
|
], |
|
dim=1, |
|
) |
|
else: |
|
latent_model_input = torch.cat([latents, image_pt], dim=1) |
|
|
|
return latent_model_input |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
image: Optional[ |
|
Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor] |
|
] = None, |
|
elevation: Optional[Union[float, torch.FloatTensor]] = None, |
|
azimuth: Optional[Union[float, torch.FloatTensor]] = None, |
|
distance: Optional[Union[float, torch.FloatTensor]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 3.0, |
|
num_images_per_prompt: int = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
clip_image_embeddings: Optional[torch.FloatTensor] = None, |
|
image_camera_embeddings: Optional[torch.FloatTensor] = None, |
|
image_latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): |
|
The image or images to guide the image generation. If you provide a tensor, it needs to comply with the |
|
configuration of |
|
[this](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json) |
|
`CLIPImageProcessor` |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
|
|
|
|
self.check_inputs(image, height, width, callback_steps) |
|
|
|
|
|
if isinstance(image, PIL.Image.Image): |
|
batch_size = 1 |
|
elif isinstance(image, list): |
|
batch_size = len(image) |
|
elif isinstance(image, torch.Tensor): |
|
batch_size = image.shape[0] |
|
else: |
|
assert image_latents is not None |
|
assert ( |
|
clip_image_embeddings is not None or image_camera_embeddings is not None |
|
) |
|
batch_size = image_latents.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
if isinstance(image, PIL.Image.Image) or isinstance(image, list): |
|
pil_image = image |
|
elif isinstance(image, torch.Tensor): |
|
pil_image = [TF.to_pil_image(image[i]) for i in range(image.shape[0])] |
|
else: |
|
pil_image = None |
|
image_embeddings = self._encode_image( |
|
pil_image, |
|
elevation, |
|
azimuth, |
|
distance, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
clip_image_embeddings, |
|
image_camera_embeddings, |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
|
|
num_channels_latents = 4 |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
image_embeddings.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = self._get_latent_model_input( |
|
latents, |
|
image, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
image_latents, |
|
) |
|
latent_model_input = self.scheduler.scale_model_input( |
|
latent_model_input, t |
|
) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=image_embeddings, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * ( |
|
noise_pred_text - noise_pred_uncond |
|
) |
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, t, latents, **extra_step_kwargs |
|
).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ( |
|
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 |
|
): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode( |
|
latents / self.vae.config.scaling_factor, return_dict=False |
|
)[0] |
|
image, has_nsfw_concept = self.run_safety_checker( |
|
image, device, image_embeddings.dtype |
|
) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess( |
|
image, output_type=output_type, do_denormalize=do_denormalize |
|
) |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput( |
|
images=image, nsfw_content_detected=has_nsfw_concept |
|
) |