--- base_model: '' tags: - generated_from_trainer datasets: - conll2003 model-index: - name: span-marker-roberta-base-conll03 results: [] --- # span-marker-roberta-base-conll03 This model is a fine-tuned version of [](https://huggingface.co/) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0121 - Overall Precision: 0.9357 - Overall Recall: 0.9346 - Overall F1: 0.9351 - Overall Accuracy: 0.9870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.0351 | 0.28 | 500 | 0.0272 | 0.8928 | 0.8251 | 0.8576 | 0.9662 | | 0.0209 | 0.55 | 1000 | 0.0168 | 0.9066 | 0.9167 | 0.9116 | 0.9820 | | 0.0169 | 0.83 | 1500 | 0.0120 | 0.9380 | 0.9291 | 0.9336 | 0.9863 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3