aspire commited on
Commit
08a05ee
·
verified ·
1 Parent(s): 4ec0bf2

update Sequence Length

Browse files
Files changed (1) hide show
  1. README.md +328 -323
README.md CHANGED
@@ -18,17 +18,17 @@ model-index:
18
  revision: b44c3b011063adb25877c13823db83bb193913c4
19
  metrics:
20
  - type: cos_sim_pearson
21
- value: 54.03219651150428
22
  - type: cos_sim_spearman
23
- value: 58.80567952355933
24
  - type: euclidean_pearson
25
- value: 57.47052075207808
26
  - type: euclidean_spearman
27
- value: 58.80429232297114
28
  - type: manhattan_pearson
29
- value: 57.46163912433917
30
  - type: manhattan_spearman
31
- value: 58.797778532121
32
  - task:
33
  type: STS
34
  dataset:
@@ -39,17 +39,17 @@ model-index:
39
  revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
40
  metrics:
41
  - type: cos_sim_pearson
42
- value: 53.523171963746854
43
  - type: cos_sim_spearman
44
- value: 57.94610819724817
45
  - type: euclidean_pearson
46
- value: 61.16974418403869
47
  - type: euclidean_spearman
48
- value: 57.94681861980281
49
  - type: manhattan_pearson
50
- value: 61.167825359334515
51
  - type: manhattan_spearman
52
- value: 57.94540903298445
53
  - task:
54
  type: Classification
55
  dataset:
@@ -60,9 +60,9 @@ model-index:
60
  revision: 1399c76144fd37290681b995c656ef9b2e06e26d
61
  metrics:
62
  - type: accuracy
63
- value: 48.556
64
  - type: f1
65
- value: 46.61852566163211
66
  - task:
67
  type: STS
68
  dataset:
@@ -73,17 +73,17 @@ model-index:
73
  revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
74
  metrics:
75
  - type: cos_sim_pearson
76
- value: 68.26963267181252
77
  - type: cos_sim_spearman
78
- value: 70.36696156869363
79
  - type: euclidean_pearson
80
- value: 69.42591718370763
81
  - type: euclidean_spearman
82
- value: 70.3677583116469
83
  - type: manhattan_pearson
84
- value: 69.40127857737215
85
  - type: manhattan_spearman
86
- value: 70.34572662526428
87
  - task:
88
  type: Clustering
89
  dataset:
@@ -94,7 +94,7 @@ model-index:
94
  revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
95
  metrics:
96
  - type: v_measure
97
- value: 46.54685387179774
98
  - task:
99
  type: Clustering
100
  dataset:
@@ -105,7 +105,7 @@ model-index:
105
  revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
106
  metrics:
107
  - type: v_measure
108
- value: 44.45602575811581
109
  - task:
110
  type: Reranking
111
  dataset:
@@ -116,9 +116,9 @@ model-index:
116
  revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
117
  metrics:
118
  - type: map
119
- value: 88.4576468720639
120
  - type: mrr
121
- value: 90.90595238095237
122
  - task:
123
  type: Reranking
124
  dataset:
@@ -129,9 +129,9 @@ model-index:
129
  revision: 23d186750531a14a0357ca22cd92d712fd512ea0
130
  metrics:
131
  - type: map
132
- value: 88.71413673867269
133
  - type: mrr
134
- value: 91.19265873015873
135
  - task:
136
  type: Retrieval
137
  dataset:
@@ -142,65 +142,65 @@ model-index:
142
  revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
143
  metrics:
144
  - type: map_at_1
145
- value: 26.825
146
  - type: map_at_10
147
- value: 39.959
148
  - type: map_at_100
149
- value: 41.861
150
  - type: map_at_1000
151
- value: 41.963
152
  - type: map_at_3
153
- value: 35.357
154
  - type: map_at_5
155
- value: 38.001000000000005
156
  - type: mrr_at_1
157
- value: 40.585
158
  - type: mrr_at_10
159
- value: 48.802
160
  - type: mrr_at_100
161
- value: 49.779
162
  - type: mrr_at_1000
163
- value: 49.819
164
  - type: mrr_at_3
165
- value: 46.095000000000006
166
  - type: mrr_at_5
167
- value: 47.678
168
  - type: ndcg_at_1
169
- value: 40.585
170
  - type: ndcg_at_10
171
- value: 46.758
172
  - type: ndcg_at_100
173
- value: 53.957
174
  - type: ndcg_at_1000
175
- value: 55.656000000000006
176
  - type: ndcg_at_3
177
- value: 40.961
178
  - type: ndcg_at_5
179
- value: 43.564
180
  - type: precision_at_1
181
- value: 40.585
182
  - type: precision_at_10
183
- value: 10.424999999999999
184
  - type: precision_at_100
185
  value: 1.625
186
  - type: precision_at_1000
187
  value: 0.184
188
  - type: precision_at_3
189
- value: 23.114
190
  - type: precision_at_5
191
- value: 17.024
192
  - type: recall_at_1
193
- value: 26.825
194
  - type: recall_at_10
195
- value: 57.909
196
  - type: recall_at_100
197
- value: 87.375
198
  - type: recall_at_1000
199
- value: 98.695
200
  - type: recall_at_3
201
- value: 40.754000000000005
202
  - type: recall_at_5
203
- value: 48.472
204
  - task:
205
  type: PairClassification
206
  dataset:
@@ -211,51 +211,51 @@ model-index:
211
  revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
212
  metrics:
213
  - type: cos_sim_accuracy
214
- value: 83.4155141310884
215
  - type: cos_sim_ap
216
- value: 90.49006000181046
217
  - type: cos_sim_f1
218
- value: 84.28797826579125
219
  - type: cos_sim_precision
220
- value: 81.69848584595128
221
  - type: cos_sim_recall
222
- value: 87.04699555763385
223
  - type: dot_accuracy
224
- value: 83.40348767288035
225
  - type: dot_ap
226
- value: 90.50667776818787
227
  - type: dot_f1
228
- value: 84.31853669417802
229
  - type: dot_precision
230
- value: 80.61420345489442
231
  - type: dot_recall
232
- value: 88.379705400982
233
  - type: euclidean_accuracy
234
  value: 83.43956704750451
235
  - type: euclidean_ap
236
- value: 90.48869698176196
237
  - type: euclidean_f1
238
- value: 84.32616081540203
239
  - type: euclidean_precision
240
- value: 81.77026136613222
241
  - type: euclidean_recall
242
- value: 87.04699555763385
243
  - type: manhattan_accuracy
244
  value: 83.55983162958509
245
  - type: manhattan_ap
246
- value: 90.47972486190912
247
  - type: manhattan_f1
248
- value: 84.42325158946412
249
  - type: manhattan_precision
250
- value: 82.0569410726109
251
  - type: manhattan_recall
252
- value: 86.93009118541033
253
  - type: max_accuracy
254
  value: 83.55983162958509
255
  - type: max_ap
256
- value: 90.50667776818787
257
  - type: max_f1
258
- value: 84.42325158946412
259
  - task:
260
  type: Retrieval
261
  dataset:
@@ -266,65 +266,65 @@ model-index:
266
  revision: 1271c7809071a13532e05f25fb53511ffce77117
267
  metrics:
268
  - type: map_at_1
269
- value: 67.597
270
  - type: map_at_10
271
- value: 76.545
272
  - type: map_at_100
273
- value: 76.893
274
  - type: map_at_1000
275
- value: 76.897
276
  - type: map_at_3
277
- value: 74.807
278
  - type: map_at_5
279
- value: 75.895
280
  - type: mrr_at_1
281
- value: 67.861
282
  - type: mrr_at_10
283
- value: 76.545
284
  - type: mrr_at_100
285
- value: 76.893
286
  - type: mrr_at_1000
287
- value: 76.897
288
  - type: mrr_at_3
289
- value: 74.886
290
  - type: mrr_at_5
291
- value: 75.934
292
  - type: ndcg_at_1
293
- value: 67.861
294
  - type: ndcg_at_10
295
- value: 80.417
296
  - type: ndcg_at_100
297
- value: 81.928
298
  - type: ndcg_at_1000
299
- value: 82.038
300
  - type: ndcg_at_3
301
- value: 77.025
302
  - type: ndcg_at_5
303
- value: 78.94099999999999
304
  - type: precision_at_1
305
- value: 67.861
306
  - type: precision_at_10
307
- value: 9.336
308
  - type: precision_at_100
309
  value: 1.001
310
  - type: precision_at_1000
311
  value: 0.101
312
  - type: precision_at_3
313
- value: 27.959
314
  - type: precision_at_5
315
- value: 17.745
316
  - type: recall_at_1
317
- value: 67.597
318
  - type: recall_at_10
319
- value: 92.308
320
  - type: recall_at_100
321
  value: 99.05199999999999
322
  - type: recall_at_1000
323
  value: 99.895
324
  - type: recall_at_3
325
- value: 83.325
326
  - type: recall_at_5
327
- value: 87.908
328
  - task:
329
  type: Retrieval
330
  dataset:
@@ -335,65 +335,65 @@ model-index:
335
  revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
336
  metrics:
337
  - type: map_at_1
338
- value: 25.574
339
  - type: map_at_10
340
- value: 78.493
341
  - type: map_at_100
342
- value: 81.384
343
  - type: map_at_1000
344
- value: 81.429
345
  - type: map_at_3
346
- value: 54.107000000000006
347
  - type: map_at_5
348
- value: 68.755
349
  - type: mrr_at_1
350
- value: 89.2
351
  - type: mrr_at_10
352
- value: 92.567
353
  - type: mrr_at_100
354
- value: 92.642
355
  - type: mrr_at_1000
356
- value: 92.646
357
  - type: mrr_at_3
358
- value: 92.258
359
  - type: mrr_at_5
360
- value: 92.458
361
  - type: ndcg_at_1
362
- value: 89.2
363
  - type: ndcg_at_10
364
- value: 86.084
365
  - type: ndcg_at_100
366
- value: 89.053
367
  - type: ndcg_at_1000
368
- value: 89.484
369
  - type: ndcg_at_3
370
- value: 84.898
371
  - type: ndcg_at_5
372
- value: 84.078
373
  - type: precision_at_1
374
- value: 89.2
375
  - type: precision_at_10
376
- value: 41.345
377
  - type: precision_at_100
378
- value: 4.779
379
  - type: precision_at_1000
380
  value: 0.488
381
  - type: precision_at_3
382
- value: 76.167
383
  - type: precision_at_5
384
- value: 64.7
385
  - type: recall_at_1
386
- value: 25.574
387
  - type: recall_at_10
388
- value: 87.153
389
  - type: recall_at_100
390
- value: 96.829
391
  - type: recall_at_1000
392
- value: 99.11999999999999
393
  - type: recall_at_3
394
- value: 56.421
395
  - type: recall_at_5
396
- value: 73.7
397
  - task:
398
  type: Retrieval
399
  dataset:
@@ -404,63 +404,63 @@ model-index:
404
  revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
405
  metrics:
406
  - type: map_at_1
407
- value: 52.0
408
  - type: map_at_10
409
- value: 62.553000000000004
410
  - type: map_at_100
411
- value: 63.048
412
  - type: map_at_1000
413
- value: 63.065000000000005
414
  - type: map_at_3
415
- value: 60.233000000000004
416
  - type: map_at_5
417
- value: 61.712999999999994
418
  - type: mrr_at_1
419
- value: 52.0
420
  - type: mrr_at_10
421
- value: 62.553000000000004
422
  - type: mrr_at_100
423
- value: 63.048
424
  - type: mrr_at_1000
425
- value: 63.065000000000005
426
  - type: mrr_at_3
427
- value: 60.233000000000004
428
  - type: mrr_at_5
429
- value: 61.712999999999994
430
  - type: ndcg_at_1
431
- value: 52.0
432
  - type: ndcg_at_10
433
- value: 67.51599999999999
434
  - type: ndcg_at_100
435
- value: 69.896
436
  - type: ndcg_at_1000
437
- value: 70.281
438
  - type: ndcg_at_3
439
  value: 62.82600000000001
440
  - type: ndcg_at_5
441
- value: 65.498
442
  - type: precision_at_1
443
- value: 52.0
444
  - type: precision_at_10
445
- value: 8.3
446
  - type: precision_at_100
447
  value: 0.941
448
  - type: precision_at_1000
449
  value: 0.097
450
  - type: precision_at_3
451
- value: 23.433
452
  - type: precision_at_5
453
  value: 15.36
454
  - type: recall_at_1
455
- value: 52.0
456
  - type: recall_at_10
457
- value: 83.0
458
  - type: recall_at_100
459
  value: 94.1
460
  - type: recall_at_1000
461
  value: 97.0
462
  - type: recall_at_3
463
- value: 70.3
464
  - type: recall_at_5
465
  value: 76.8
466
  - task:
@@ -473,9 +473,9 @@ model-index:
473
  revision: 421605374b29664c5fc098418fe20ada9bd55f8a
474
  metrics:
475
  - type: accuracy
476
- value: 51.76606387071951
477
  - type: f1
478
- value: 40.25725744367441
479
  - task:
480
  type: Classification
481
  dataset:
@@ -501,17 +501,17 @@ model-index:
501
  revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
502
  metrics:
503
  - type: cos_sim_pearson
504
- value: 71.13755846688528
505
  - type: cos_sim_spearman
506
- value: 78.17322744116031
507
  - type: euclidean_pearson
508
- value: 77.48740502819294
509
  - type: euclidean_spearman
510
- value: 78.17553979551616
511
  - type: manhattan_pearson
512
- value: 77.47671561749276
513
  - type: manhattan_spearman
514
- value: 78.16780681181362
515
  - task:
516
  type: Reranking
517
  dataset:
@@ -522,9 +522,9 @@ model-index:
522
  revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
523
  metrics:
524
  - type: map
525
- value: 27.054392822906316
526
  - type: mrr
527
- value: 29.001190476190473
528
  - task:
529
  type: Retrieval
530
  dataset:
@@ -535,65 +535,65 @@ model-index:
535
  revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
536
  metrics:
537
  - type: map_at_1
538
- value: 65.62599999999999
539
  - type: map_at_10
540
- value: 74.749
541
  - type: map_at_100
542
  value: 75.091
543
  - type: map_at_1000
544
- value: 75.103
545
  - type: map_at_3
546
- value: 73.007
547
  - type: map_at_5
548
- value: 74.124
549
  - type: mrr_at_1
550
- value: 67.894
551
  - type: mrr_at_10
552
- value: 75.374
553
  - type: mrr_at_100
554
- value: 75.67399999999999
555
  - type: mrr_at_1000
556
  value: 75.685
557
  - type: mrr_at_3
558
- value: 73.868
559
  - type: mrr_at_5
560
- value: 74.83
561
  - type: ndcg_at_1
562
- value: 67.894
563
  - type: ndcg_at_10
564
- value: 78.414
565
  - type: ndcg_at_100
566
- value: 79.947
567
  - type: ndcg_at_1000
568
  value: 80.265
569
  - type: ndcg_at_3
570
- value: 75.12
571
  - type: ndcg_at_5
572
- value: 76.999
573
  - type: precision_at_1
574
- value: 67.894
575
  - type: precision_at_10
576
- value: 9.47
577
  - type: precision_at_100
578
  value: 1.023
579
  - type: precision_at_1000
580
  value: 0.105
581
  - type: precision_at_3
582
- value: 28.333000000000002
583
  - type: precision_at_5
584
- value: 17.989
585
  - type: recall_at_1
586
- value: 65.62599999999999
587
  - type: recall_at_10
588
- value: 89.063
589
  - type: recall_at_100
590
- value: 95.99499999999999
591
  - type: recall_at_1000
592
  value: 98.455
593
  - type: recall_at_3
594
- value: 80.357
595
  - type: recall_at_5
596
- value: 84.824
597
  - task:
598
  type: Classification
599
  dataset:
@@ -604,9 +604,9 @@ model-index:
604
  revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
605
  metrics:
606
  - type: accuracy
607
- value: 75.88433086751849
608
  - type: f1
609
- value: 73.06801290283882
610
  - task:
611
  type: Classification
612
  dataset:
@@ -617,9 +617,9 @@ model-index:
617
  revision: 7d571f92784cd94a019292a1f45445077d0ef634
618
  metrics:
619
  - type: accuracy
620
- value: 78.44317417619366
621
  - type: f1
622
- value: 78.1407925250533
623
  - task:
624
  type: Retrieval
625
  dataset:
@@ -630,65 +630,65 @@ model-index:
630
  revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
631
  metrics:
632
  - type: map_at_1
633
- value: 54.900000000000006
634
  - type: map_at_10
635
- value: 61.0
636
  - type: map_at_100
637
- value: 61.549
638
  - type: map_at_1000
639
- value: 61.590999999999994
640
  - type: map_at_3
641
- value: 59.516999999999996
642
  - type: map_at_5
643
- value: 60.267
644
  - type: mrr_at_1
645
- value: 55.1
646
  - type: mrr_at_10
647
- value: 61.1
648
  - type: mrr_at_100
649
- value: 61.649
650
  - type: mrr_at_1000
651
- value: 61.690999999999995
652
  - type: mrr_at_3
653
- value: 59.617
654
  - type: mrr_at_5
655
- value: 60.367000000000004
656
  - type: ndcg_at_1
657
- value: 54.900000000000006
658
  - type: ndcg_at_10
659
- value: 64.07000000000001
660
  - type: ndcg_at_100
661
- value: 66.981
662
  - type: ndcg_at_1000
663
- value: 68.207
664
  - type: ndcg_at_3
665
- value: 60.955999999999996
666
  - type: ndcg_at_5
667
- value: 62.31100000000001
668
  - type: precision_at_1
669
- value: 54.900000000000006
670
  - type: precision_at_10
671
- value: 7.380000000000001
672
  - type: precision_at_100
673
- value: 0.88
674
  - type: precision_at_1000
675
  value: 0.098
676
  - type: precision_at_3
677
  value: 21.7
678
  - type: precision_at_5
679
- value: 13.68
680
  - type: recall_at_1
681
- value: 54.900000000000006
682
  - type: recall_at_10
683
- value: 73.8
684
  - type: recall_at_100
685
- value: 88.0
686
  - type: recall_at_1000
687
  value: 97.8
688
  - type: recall_at_3
689
  value: 65.10000000000001
690
  - type: recall_at_5
691
- value: 68.4
692
  - task:
693
  type: Classification
694
  dataset:
@@ -699,9 +699,9 @@ model-index:
699
  revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
700
  metrics:
701
  - type: accuracy
702
- value: 77.56333333333333
703
  - type: f1
704
- value: 77.53666660124703
705
  - task:
706
  type: PairClassification
707
  dataset:
@@ -714,49 +714,49 @@ model-index:
714
  - type: cos_sim_accuracy
715
  value: 81.10449377368705
716
  - type: cos_sim_ap
717
- value: 85.16141108141811
718
  - type: cos_sim_f1
719
- value: 82.97771455666192
720
  - type: cos_sim_precision
721
- value: 75.30120481927712
722
  - type: cos_sim_recall
723
- value: 92.39704329461456
724
  - type: dot_accuracy
725
- value: 81.05035192203573
726
  - type: dot_ap
727
- value: 85.13568069803823
728
  - type: dot_f1
729
- value: 83.04038004750595
730
  - type: dot_precision
731
- value: 75.47495682210709
732
  - type: dot_recall
733
- value: 92.29144667370645
734
  - type: euclidean_accuracy
735
  value: 81.10449377368705
736
  - type: euclidean_ap
737
- value: 85.16341835376645
738
  - type: euclidean_f1
739
- value: 82.96860133206471
740
  - type: euclidean_precision
741
- value: 75.4978354978355
742
  - type: euclidean_recall
743
- value: 92.08025343189018
744
  - type: manhattan_accuracy
745
- value: 81.15863562533838
746
  - type: manhattan_ap
747
- value: 85.13388548299352
748
  - type: manhattan_f1
749
- value: 82.91048348492102
750
  - type: manhattan_precision
751
- value: 75.83187390542906
752
  - type: manhattan_recall
753
- value: 91.4466737064414
754
  - type: max_accuracy
755
- value: 81.15863562533838
756
  - type: max_ap
757
- value: 85.16341835376645
758
  - type: max_f1
759
- value: 83.04038004750595
760
  - task:
761
  type: Classification
762
  dataset:
@@ -767,11 +767,11 @@ model-index:
767
  revision: e610f2ebd179a8fda30ae534c3878750a96db120
768
  metrics:
769
  - type: accuracy
770
- value: 93.75
771
  - type: ap
772
- value: 91.8757063139003
773
  - type: f1
774
- value: 93.73901896028437
775
  - task:
776
  type: STS
777
  dataset:
@@ -782,17 +782,17 @@ model-index:
782
  revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
783
  metrics:
784
  - type: cos_sim_pearson
785
- value: 39.15831534609524
786
  - type: cos_sim_spearman
787
- value: 45.4969633673045
788
  - type: euclidean_pearson
789
- value: 44.848515043386826
790
  - type: euclidean_spearman
791
- value: 45.50184060659851
792
  - type: manhattan_pearson
793
- value: 44.855618769134786
794
  - type: manhattan_spearman
795
- value: 45.521349632021
796
  - task:
797
  type: STS
798
  dataset:
@@ -803,17 +803,17 @@ model-index:
803
  revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
804
  metrics:
805
  - type: cos_sim_pearson
806
- value: 34.240063381471685
807
  - type: cos_sim_spearman
808
- value: 37.29810568951238
809
  - type: euclidean_pearson
810
- value: 35.114630288288694
811
  - type: euclidean_spearman
812
- value: 37.29224953963422
813
  - type: manhattan_pearson
814
- value: 35.07429582481541
815
  - type: manhattan_spearman
816
- value: 37.24006222876743
817
  - task:
818
  type: STS
819
  dataset:
@@ -824,17 +824,17 @@ model-index:
824
  revision: eea2b4fe26a775864c896887d910b76a8098ad3f
825
  metrics:
826
  - type: cos_sim_pearson
827
- value: 61.839386292911634
828
  - type: cos_sim_spearman
829
- value: 67.05632097771566
830
  - type: euclidean_pearson
831
- value: 65.72031356075829
832
  - type: euclidean_spearman
833
- value: 67.05823973191457
834
  - type: manhattan_pearson
835
- value: 65.66073527177826
836
  - type: manhattan_spearman
837
- value: 67.04221791481658
838
  - task:
839
  type: STS
840
  dataset:
@@ -845,17 +845,17 @@ model-index:
845
  revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
846
  metrics:
847
  - type: cos_sim_pearson
848
- value: 81.56195178204662
849
  - type: cos_sim_spearman
850
- value: 82.73033434099031
851
  - type: euclidean_pearson
852
- value: 82.49605254478311
853
  - type: euclidean_spearman
854
- value: 82.72004995354247
855
  - type: manhattan_pearson
856
- value: 82.48358662476731
857
  - type: manhattan_spearman
858
- value: 82.70676710419983
859
  - task:
860
  type: Reranking
861
  dataset:
@@ -866,9 +866,9 @@ model-index:
866
  revision: 76631901a18387f85eaa53e5450019b87ad58ef9
867
  metrics:
868
  - type: map
869
- value: 65.9012655137193
870
  - type: mrr
871
- value: 75.97216177150165
872
  - task:
873
  type: Retrieval
874
  dataset:
@@ -879,65 +879,65 @@ model-index:
879
  revision: 8731a845f1bf500a4f111cf1070785c793d10e64
880
  metrics:
881
  - type: map_at_1
882
- value: 27.057
883
  - type: map_at_10
884
- value: 75.29299999999999
885
  - type: map_at_100
886
- value: 79.098
887
  - type: map_at_1000
888
- value: 79.172
889
  - type: map_at_3
890
- value: 53.049
891
  - type: map_at_5
892
- value: 65.103
893
  - type: mrr_at_1
894
- value: 88.822
895
  - type: mrr_at_10
896
- value: 91.721
897
  - type: mrr_at_100
898
- value: 91.814
899
  - type: mrr_at_1000
900
- value: 91.818
901
  - type: mrr_at_3
902
- value: 91.213
903
  - type: mrr_at_5
904
- value: 91.544
905
  - type: ndcg_at_1
906
- value: 88.822
907
  - type: ndcg_at_10
908
- value: 83.269
909
  - type: ndcg_at_100
910
- value: 87.259
911
  - type: ndcg_at_1000
912
- value: 87.938
913
  - type: ndcg_at_3
914
- value: 84.678
915
  - type: ndcg_at_5
916
- value: 83.231
917
  - type: precision_at_1
918
- value: 88.822
919
  - type: precision_at_10
920
- value: 41.297
921
  - type: precision_at_100
922
- value: 4.994
923
  - type: precision_at_1000
924
- value: 0.515
925
  - type: precision_at_3
926
- value: 73.933
927
  - type: precision_at_5
928
- value: 61.885
929
  - type: recall_at_1
930
- value: 27.057
931
  - type: recall_at_10
932
- value: 82.33200000000001
933
  - type: recall_at_100
934
- value: 95.065
935
  - type: recall_at_1000
936
- value: 98.466
937
  - type: recall_at_3
938
- value: 54.872
939
  - type: recall_at_5
940
- value: 68.814
941
  - task:
942
  type: Classification
943
  dataset:
@@ -948,9 +948,9 @@ model-index:
948
  revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
949
  metrics:
950
  - type: accuracy
951
- value: 53.690000000000005
952
  - type: f1
953
- value: 51.87306088948137
954
  - task:
955
  type: Clustering
956
  dataset:
@@ -961,7 +961,7 @@ model-index:
961
  revision: 5798586b105c0434e4f0fe5e767abe619442cf93
962
  metrics:
963
  - type: v_measure
964
- value: 73.76590442198115
965
  - task:
966
  type: Clustering
967
  dataset:
@@ -972,7 +972,7 @@ model-index:
972
  revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
973
  metrics:
974
  - type: v_measure
975
- value: 68.61875345658028
976
  - task:
977
  type: Retrieval
978
  dataset:
@@ -985,43 +985,43 @@ model-index:
985
  - type: map_at_1
986
  value: 59.4
987
  - type: map_at_10
988
- value: 69.19
989
  - type: map_at_100
990
- value: 69.711
991
- - type: map_at_1000
992
  value: 69.72699999999999
 
 
993
  - type: map_at_3
994
  value: 67.717
995
  - type: map_at_5
996
- value: 68.742
997
  - type: mrr_at_1
998
  value: 59.4
999
  - type: mrr_at_10
1000
- value: 69.19
1001
  - type: mrr_at_100
1002
- value: 69.711
1003
- - type: mrr_at_1000
1004
  value: 69.72699999999999
 
 
1005
  - type: mrr_at_3
1006
  value: 67.717
1007
  - type: mrr_at_5
1008
- value: 68.742
1009
  - type: ndcg_at_1
1010
  value: 59.4
1011
  - type: ndcg_at_10
1012
- value: 73.28099999999999
1013
  - type: ndcg_at_100
1014
- value: 75.575
1015
  - type: ndcg_at_1000
1016
- value: 75.971
1017
  - type: ndcg_at_3
1018
  value: 70.339
1019
  - type: ndcg_at_5
1020
- value: 72.16799999999999
1021
  - type: precision_at_1
1022
  value: 59.4
1023
  - type: precision_at_10
1024
- value: 8.58
1025
  - type: precision_at_100
1026
  value: 0.96
1027
  - type: precision_at_1000
@@ -1029,11 +1029,11 @@ model-index:
1029
  - type: precision_at_3
1030
  value: 25.967000000000002
1031
  - type: precision_at_5
1032
- value: 16.46
1033
  - type: recall_at_1
1034
  value: 59.4
1035
  - type: recall_at_10
1036
- value: 85.8
1037
  - type: recall_at_100
1038
  value: 96.0
1039
  - type: recall_at_1000
@@ -1041,7 +1041,7 @@ model-index:
1041
  - type: recall_at_3
1042
  value: 77.9
1043
  - type: recall_at_5
1044
- value: 82.3
1045
  - task:
1046
  type: Classification
1047
  dataset:
@@ -1052,12 +1052,14 @@ model-index:
1052
  revision: 339287def212450dcaa9df8c22bf93e9980c7023
1053
  metrics:
1054
  - type: accuracy
1055
- value: 88.56000000000002
1056
  - type: ap
1057
- value: 73.62152033132061
1058
  - type: f1
1059
- value: 87.0916916405758
1060
  ---
 
 
1061
  ## acge model
1062
 
1063
  acge是一个通用的文本编码模型,是一个可变长度的向量化模型,使用了[Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147),如图所示:
@@ -1077,13 +1079,16 @@ acge是一个通用的文本编码模型,是一个可变长度的向量化模
1077
  #### C-MTEB leaderboard (Chinese)
1078
 
1079
  测试的时候因为数据的随机性、显卡、推理的数据类型导致每次推理的结果不一致,我总共测试了4次,不同的显卡(A10 A100),不同的数据类型,测试结果放在了result文件夹中,选取了一个精度最低的测试作为最终的精度测试。
 
1080
 
1081
  | Model Name | GPU | tensor-type | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) |
1082
  |:------------------:|:---------------:|:---------:|:---------------:|:------------:|:------------------:|:--------------:|:-----------------------:|:-------------:|:-------------:|:-------:|:-------:|:-------:|
1083
- | acge_text_embedding | NVIDIA TESLA A10 | bfloat16 | 0.65 | 1792 | 1024 | 68.91 | 72.76 | 58.22 | 87.82 | 67.67 | 72.48 | 62.24 |
1084
- | acge_text_embedding | NVIDIA TESLA A100 | bfloat16 | 0.65 | 1792 | 1024 | 68.91 | 72.77 | 58.35 | 87.82 | 67.53 | 72.48 | 62.24 |
1085
  | acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 1024 | 68.99 | 72.76 | 58.68 | 87.84 | 67.89 | 72.49 | 62.24 |
1086
  | acge_text_embedding | NVIDIA TESLA A100 | float32 | 0.65 | 1792 | 1024 | 68.98 | 72.76 | 58.58 | 87.83 | 67.91 | 72.49 | 62.24 |
 
 
1087
 
1088
  #### Reproduce our results
1089
 
 
18
  revision: b44c3b011063adb25877c13823db83bb193913c4
19
  metrics:
20
  - type: cos_sim_pearson
21
+ value: 54.03434872650919
22
  - type: cos_sim_spearman
23
+ value: 58.80730796688325
24
  - type: euclidean_pearson
25
+ value: 57.47231387497989
26
  - type: euclidean_spearman
27
+ value: 58.80775026351807
28
  - type: manhattan_pearson
29
+ value: 57.46332720141574
30
  - type: manhattan_spearman
31
+ value: 58.80196022940078
32
  - task:
33
  type: STS
34
  dataset:
 
39
  revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
40
  metrics:
41
  - type: cos_sim_pearson
42
+ value: 53.52621290548175
43
  - type: cos_sim_spearman
44
+ value: 57.945227768312144
45
  - type: euclidean_pearson
46
+ value: 61.17041394151802
47
  - type: euclidean_spearman
48
+ value: 57.94553287835657
49
  - type: manhattan_pearson
50
+ value: 61.168327500057885
51
  - type: manhattan_spearman
52
+ value: 57.94477516925043
53
  - task:
54
  type: Classification
55
  dataset:
 
60
  revision: 1399c76144fd37290681b995c656ef9b2e06e26d
61
  metrics:
62
  - type: accuracy
63
+ value: 48.538000000000004
64
  - type: f1
65
+ value: 46.59920995594044
66
  - task:
67
  type: STS
68
  dataset:
 
73
  revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
74
  metrics:
75
  - type: cos_sim_pearson
76
+ value: 68.27529991817154
77
  - type: cos_sim_spearman
78
+ value: 70.37095914176643
79
  - type: euclidean_pearson
80
+ value: 69.42690712802727
81
  - type: euclidean_spearman
82
+ value: 70.37017971889912
83
  - type: manhattan_pearson
84
+ value: 69.40264877917839
85
  - type: manhattan_spearman
86
+ value: 70.34786744049524
87
  - task:
88
  type: Clustering
89
  dataset:
 
94
  revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
95
  metrics:
96
  - type: v_measure
97
+ value: 47.08027536192709
98
  - task:
99
  type: Clustering
100
  dataset:
 
105
  revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
106
  metrics:
107
  - type: v_measure
108
+ value: 44.0526024940363
109
  - task:
110
  type: Reranking
111
  dataset:
 
116
  revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
117
  metrics:
118
  - type: map
119
+ value: 88.65974993133156
120
  - type: mrr
121
+ value: 90.64761904761905
122
  - task:
123
  type: Reranking
124
  dataset:
 
129
  revision: 23d186750531a14a0357ca22cd92d712fd512ea0
130
  metrics:
131
  - type: map
132
+ value: 88.90396838907245
133
  - type: mrr
134
+ value: 90.90932539682541
135
  - task:
136
  type: Retrieval
137
  dataset:
 
142
  revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
143
  metrics:
144
  - type: map_at_1
145
+ value: 26.875
146
  - type: map_at_10
147
+ value: 39.995999999999995
148
  - type: map_at_100
149
+ value: 41.899
150
  - type: map_at_1000
151
+ value: 42.0
152
  - type: map_at_3
153
+ value: 35.414
154
  - type: map_at_5
155
+ value: 38.019
156
  - type: mrr_at_1
157
+ value: 40.635
158
  - type: mrr_at_10
159
+ value: 48.827
160
  - type: mrr_at_100
161
+ value: 49.805
162
  - type: mrr_at_1000
163
+ value: 49.845
164
  - type: mrr_at_3
165
+ value: 46.145
166
  - type: mrr_at_5
167
+ value: 47.693999999999996
168
  - type: ndcg_at_1
169
+ value: 40.635
170
  - type: ndcg_at_10
171
+ value: 46.78
172
  - type: ndcg_at_100
173
+ value: 53.986999999999995
174
  - type: ndcg_at_1000
175
+ value: 55.684
176
  - type: ndcg_at_3
177
+ value: 41.018
178
  - type: ndcg_at_5
179
+ value: 43.559
180
  - type: precision_at_1
181
+ value: 40.635
182
  - type: precision_at_10
183
+ value: 10.427999999999999
184
  - type: precision_at_100
185
  value: 1.625
186
  - type: precision_at_1000
187
  value: 0.184
188
  - type: precision_at_3
189
+ value: 23.139000000000003
190
  - type: precision_at_5
191
+ value: 17.004
192
  - type: recall_at_1
193
+ value: 26.875
194
  - type: recall_at_10
195
+ value: 57.887
196
  - type: recall_at_100
197
+ value: 87.408
198
  - type: recall_at_1000
199
+ value: 98.721
200
  - type: recall_at_3
201
+ value: 40.812
202
  - type: recall_at_5
203
+ value: 48.397
204
  - task:
205
  type: PairClassification
206
  dataset:
 
211
  revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
212
  metrics:
213
  - type: cos_sim_accuracy
214
+ value: 83.43956704750451
215
  - type: cos_sim_ap
216
+ value: 90.49172854352659
217
  - type: cos_sim_f1
218
+ value: 84.28475486903963
219
  - type: cos_sim_precision
220
+ value: 80.84603822203135
221
  - type: cos_sim_recall
222
+ value: 88.02899228431144
223
  - type: dot_accuracy
224
+ value: 83.43956704750451
225
  - type: dot_ap
226
+ value: 90.46317132695233
227
  - type: dot_f1
228
+ value: 84.28794294628929
229
  - type: dot_precision
230
+ value: 80.51948051948052
231
  - type: dot_recall
232
+ value: 88.4264671498714
233
  - type: euclidean_accuracy
234
  value: 83.43956704750451
235
  - type: euclidean_ap
236
+ value: 90.49171785256486
237
  - type: euclidean_f1
238
+ value: 84.28235820561584
239
  - type: euclidean_precision
240
+ value: 80.8022308022308
241
  - type: euclidean_recall
242
+ value: 88.07575403320084
243
  - type: manhattan_accuracy
244
  value: 83.55983162958509
245
  - type: manhattan_ap
246
+ value: 90.48046779812815
247
  - type: manhattan_f1
248
+ value: 84.45354259069714
249
  - type: manhattan_precision
250
+ value: 82.21877767936226
251
  - type: manhattan_recall
252
+ value: 86.81318681318682
253
  - type: max_accuracy
254
  value: 83.55983162958509
255
  - type: max_ap
256
+ value: 90.49172854352659
257
  - type: max_f1
258
+ value: 84.45354259069714
259
  - task:
260
  type: Retrieval
261
  dataset:
 
266
  revision: 1271c7809071a13532e05f25fb53511ffce77117
267
  metrics:
268
  - type: map_at_1
269
+ value: 68.54599999999999
270
  - type: map_at_10
271
+ value: 77.62400000000001
272
  - type: map_at_100
273
+ value: 77.886
274
  - type: map_at_1000
275
+ value: 77.89
276
  - type: map_at_3
277
+ value: 75.966
278
  - type: map_at_5
279
+ value: 76.995
280
  - type: mrr_at_1
281
+ value: 68.915
282
  - type: mrr_at_10
283
+ value: 77.703
284
  - type: mrr_at_100
285
+ value: 77.958
286
  - type: mrr_at_1000
287
+ value: 77.962
288
  - type: mrr_at_3
289
+ value: 76.08
290
  - type: mrr_at_5
291
+ value: 77.118
292
  - type: ndcg_at_1
293
+ value: 68.809
294
  - type: ndcg_at_10
295
+ value: 81.563
296
  - type: ndcg_at_100
297
+ value: 82.758
298
  - type: ndcg_at_1000
299
+ value: 82.864
300
  - type: ndcg_at_3
301
+ value: 78.29
302
  - type: ndcg_at_5
303
+ value: 80.113
304
  - type: precision_at_1
305
+ value: 68.809
306
  - type: precision_at_10
307
+ value: 9.463000000000001
308
  - type: precision_at_100
309
  value: 1.001
310
  - type: precision_at_1000
311
  value: 0.101
312
  - type: precision_at_3
313
+ value: 28.486
314
  - type: precision_at_5
315
+ value: 18.019
316
  - type: recall_at_1
317
+ value: 68.54599999999999
318
  - type: recall_at_10
319
+ value: 93.625
320
  - type: recall_at_100
321
  value: 99.05199999999999
322
  - type: recall_at_1000
323
  value: 99.895
324
  - type: recall_at_3
325
+ value: 84.879
326
  - type: recall_at_5
327
+ value: 89.252
328
  - task:
329
  type: Retrieval
330
  dataset:
 
335
  revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
336
  metrics:
337
  - type: map_at_1
338
+ value: 25.653
339
  - type: map_at_10
340
+ value: 79.105
341
  - type: map_at_100
342
+ value: 81.902
343
  - type: map_at_1000
344
+ value: 81.947
345
  - type: map_at_3
346
+ value: 54.54599999999999
347
  - type: map_at_5
348
+ value: 69.226
349
  - type: mrr_at_1
350
+ value: 89.35
351
  - type: mrr_at_10
352
+ value: 92.69
353
  - type: mrr_at_100
354
+ value: 92.77
355
  - type: mrr_at_1000
356
+ value: 92.774
357
  - type: mrr_at_3
358
+ value: 92.425
359
  - type: mrr_at_5
360
+ value: 92.575
361
  - type: ndcg_at_1
362
+ value: 89.35
363
  - type: ndcg_at_10
364
+ value: 86.55199999999999
365
  - type: ndcg_at_100
366
+ value: 89.35300000000001
367
  - type: ndcg_at_1000
368
+ value: 89.782
369
  - type: ndcg_at_3
370
+ value: 85.392
371
  - type: ndcg_at_5
372
+ value: 84.5
373
  - type: precision_at_1
374
+ value: 89.35
375
  - type: precision_at_10
376
+ value: 41.589999999999996
377
  - type: precision_at_100
378
+ value: 4.781
379
  - type: precision_at_1000
380
  value: 0.488
381
  - type: precision_at_3
382
+ value: 76.683
383
  - type: precision_at_5
384
+ value: 65.06
385
  - type: recall_at_1
386
+ value: 25.653
387
  - type: recall_at_10
388
+ value: 87.64999999999999
389
  - type: recall_at_100
390
+ value: 96.858
391
  - type: recall_at_1000
392
+ value: 99.13300000000001
393
  - type: recall_at_3
394
+ value: 56.869
395
  - type: recall_at_5
396
+ value: 74.024
397
  - task:
398
  type: Retrieval
399
  dataset:
 
404
  revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
405
  metrics:
406
  - type: map_at_1
407
+ value: 52.1
408
  - type: map_at_10
409
+ value: 62.629999999999995
410
  - type: map_at_100
411
+ value: 63.117000000000004
412
  - type: map_at_1000
413
+ value: 63.134
414
  - type: map_at_3
415
+ value: 60.267
416
  - type: map_at_5
417
+ value: 61.777
418
  - type: mrr_at_1
419
+ value: 52.1
420
  - type: mrr_at_10
421
+ value: 62.629999999999995
422
  - type: mrr_at_100
423
+ value: 63.117000000000004
424
  - type: mrr_at_1000
425
+ value: 63.134
426
  - type: mrr_at_3
427
+ value: 60.267
428
  - type: mrr_at_5
429
+ value: 61.777
430
  - type: ndcg_at_1
431
+ value: 52.1
432
  - type: ndcg_at_10
433
+ value: 67.596
434
  - type: ndcg_at_100
435
+ value: 69.95
436
  - type: ndcg_at_1000
437
+ value: 70.33500000000001
438
  - type: ndcg_at_3
439
  value: 62.82600000000001
440
  - type: ndcg_at_5
441
+ value: 65.546
442
  - type: precision_at_1
443
+ value: 52.1
444
  - type: precision_at_10
445
+ value: 8.309999999999999
446
  - type: precision_at_100
447
  value: 0.941
448
  - type: precision_at_1000
449
  value: 0.097
450
  - type: precision_at_3
451
+ value: 23.400000000000002
452
  - type: precision_at_5
453
  value: 15.36
454
  - type: recall_at_1
455
+ value: 52.1
456
  - type: recall_at_10
457
+ value: 83.1
458
  - type: recall_at_100
459
  value: 94.1
460
  - type: recall_at_1000
461
  value: 97.0
462
  - type: recall_at_3
463
+ value: 70.19999999999999
464
  - type: recall_at_5
465
  value: 76.8
466
  - task:
 
473
  revision: 421605374b29664c5fc098418fe20ada9bd55f8a
474
  metrics:
475
  - type: accuracy
476
+ value: 51.773759138130046
477
  - type: f1
478
+ value: 40.341407912920054
479
  - task:
480
  type: Classification
481
  dataset:
 
501
  revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
502
  metrics:
503
  - type: cos_sim_pearson
504
+ value: 71.1397780205448
505
  - type: cos_sim_spearman
506
+ value: 78.17368193033309
507
  - type: euclidean_pearson
508
+ value: 77.4849177602368
509
  - type: euclidean_spearman
510
+ value: 78.17369079663212
511
  - type: manhattan_pearson
512
+ value: 77.47344305182406
513
  - type: manhattan_spearman
514
+ value: 78.16454335155387
515
  - task:
516
  type: Reranking
517
  dataset:
 
522
  revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
523
  metrics:
524
  - type: map
525
+ value: 27.76160559006673
526
  - type: mrr
527
+ value: 28.02420634920635
528
  - task:
529
  type: Retrieval
530
  dataset:
 
535
  revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
536
  metrics:
537
  - type: map_at_1
538
+ value: 65.661
539
  - type: map_at_10
540
+ value: 74.752
541
  - type: map_at_100
542
  value: 75.091
543
  - type: map_at_1000
544
+ value: 75.104
545
  - type: map_at_3
546
+ value: 72.997
547
  - type: map_at_5
548
+ value: 74.119
549
  - type: mrr_at_1
550
+ value: 67.923
551
  - type: mrr_at_10
552
+ value: 75.376
553
  - type: mrr_at_100
554
+ value: 75.673
555
  - type: mrr_at_1000
556
  value: 75.685
557
  - type: mrr_at_3
558
+ value: 73.856
559
  - type: mrr_at_5
560
+ value: 74.82799999999999
561
  - type: ndcg_at_1
562
+ value: 67.923
563
  - type: ndcg_at_10
564
+ value: 78.424
565
  - type: ndcg_at_100
566
+ value: 79.95100000000001
567
  - type: ndcg_at_1000
568
  value: 80.265
569
  - type: ndcg_at_3
570
+ value: 75.101
571
  - type: ndcg_at_5
572
+ value: 76.992
573
  - type: precision_at_1
574
+ value: 67.923
575
  - type: precision_at_10
576
+ value: 9.474
577
  - type: precision_at_100
578
  value: 1.023
579
  - type: precision_at_1000
580
  value: 0.105
581
  - type: precision_at_3
582
+ value: 28.319
583
  - type: precision_at_5
584
+ value: 17.986
585
  - type: recall_at_1
586
+ value: 65.661
587
  - type: recall_at_10
588
+ value: 89.09899999999999
589
  - type: recall_at_100
590
+ value: 96.023
591
  - type: recall_at_1000
592
  value: 98.455
593
  - type: recall_at_3
594
+ value: 80.314
595
  - type: recall_at_5
596
+ value: 84.81
597
  - task:
598
  type: Classification
599
  dataset:
 
604
  revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
605
  metrics:
606
  - type: accuracy
607
+ value: 75.86751849361131
608
  - type: f1
609
+ value: 73.04918450508
610
  - task:
611
  type: Classification
612
  dataset:
 
617
  revision: 7d571f92784cd94a019292a1f45445077d0ef634
618
  metrics:
619
  - type: accuracy
620
+ value: 78.4364492266308
621
  - type: f1
622
+ value: 78.120686034844
623
  - task:
624
  type: Retrieval
625
  dataset:
 
630
  revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
631
  metrics:
632
  - type: map_at_1
633
+ value: 55.00000000000001
634
  - type: map_at_10
635
+ value: 61.06399999999999
636
  - type: map_at_100
637
+ value: 61.622
638
  - type: map_at_1000
639
+ value: 61.663000000000004
640
  - type: map_at_3
641
+ value: 59.583
642
  - type: map_at_5
643
+ value: 60.373
644
  - type: mrr_at_1
645
+ value: 55.2
646
  - type: mrr_at_10
647
+ value: 61.168
648
  - type: mrr_at_100
649
+ value: 61.726000000000006
650
  - type: mrr_at_1000
651
+ value: 61.767
652
  - type: mrr_at_3
653
+ value: 59.683
654
  - type: mrr_at_5
655
+ value: 60.492999999999995
656
  - type: ndcg_at_1
657
+ value: 55.00000000000001
658
  - type: ndcg_at_10
659
+ value: 64.098
660
  - type: ndcg_at_100
661
+ value: 67.05
662
  - type: ndcg_at_1000
663
+ value: 68.262
664
  - type: ndcg_at_3
665
+ value: 61.00600000000001
666
  - type: ndcg_at_5
667
+ value: 62.439
668
  - type: precision_at_1
669
+ value: 55.00000000000001
670
  - type: precision_at_10
671
+ value: 7.37
672
  - type: precision_at_100
673
+ value: 0.881
674
  - type: precision_at_1000
675
  value: 0.098
676
  - type: precision_at_3
677
  value: 21.7
678
  - type: precision_at_5
679
+ value: 13.719999999999999
680
  - type: recall_at_1
681
+ value: 55.00000000000001
682
  - type: recall_at_10
683
+ value: 73.7
684
  - type: recall_at_100
685
+ value: 88.1
686
  - type: recall_at_1000
687
  value: 97.8
688
  - type: recall_at_3
689
  value: 65.10000000000001
690
  - type: recall_at_5
691
+ value: 68.60000000000001
692
  - task:
693
  type: Classification
694
  dataset:
 
699
  revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
700
  metrics:
701
  - type: accuracy
702
+ value: 77.52666666666667
703
  - type: f1
704
+ value: 77.49784731367215
705
  - task:
706
  type: PairClassification
707
  dataset:
 
714
  - type: cos_sim_accuracy
715
  value: 81.10449377368705
716
  - type: cos_sim_ap
717
+ value: 85.17742765935606
718
  - type: cos_sim_f1
719
+ value: 83.00094966761633
720
  - type: cos_sim_precision
721
+ value: 75.40983606557377
722
  - type: cos_sim_recall
723
+ value: 92.29144667370645
724
  - type: dot_accuracy
725
+ value: 81.10449377368705
726
  - type: dot_ap
727
+ value: 85.17143850809614
728
  - type: dot_f1
729
+ value: 83.01707779886148
730
  - type: dot_precision
731
+ value: 75.36606373815677
732
  - type: dot_recall
733
+ value: 92.39704329461456
734
  - type: euclidean_accuracy
735
  value: 81.10449377368705
736
  - type: euclidean_ap
737
+ value: 85.17856775343333
738
  - type: euclidean_f1
739
+ value: 83.00094966761633
740
  - type: euclidean_precision
741
+ value: 75.40983606557377
742
  - type: euclidean_recall
743
+ value: 92.29144667370645
744
  - type: manhattan_accuracy
745
+ value: 81.05035192203573
746
  - type: manhattan_ap
747
+ value: 85.14464459395809
748
  - type: manhattan_f1
749
+ value: 82.96155671570953
750
  - type: manhattan_precision
751
+ value: 75.3448275862069
752
  - type: manhattan_recall
753
+ value: 92.29144667370645
754
  - type: max_accuracy
755
+ value: 81.10449377368705
756
  - type: max_ap
757
+ value: 85.17856775343333
758
  - type: max_f1
759
+ value: 83.01707779886148
760
  - task:
761
  type: Classification
762
  dataset:
 
767
  revision: e610f2ebd179a8fda30ae534c3878750a96db120
768
  metrics:
769
  - type: accuracy
770
+ value: 93.71000000000001
771
  - type: ap
772
+ value: 91.83202232349356
773
  - type: f1
774
+ value: 93.69900560334331
775
  - task:
776
  type: STS
777
  dataset:
 
782
  revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
783
  metrics:
784
  - type: cos_sim_pearson
785
+ value: 39.175047651512415
786
  - type: cos_sim_spearman
787
+ value: 45.51434675777896
788
  - type: euclidean_pearson
789
+ value: 44.864110004132286
790
  - type: euclidean_spearman
791
+ value: 45.516433048896076
792
  - type: manhattan_pearson
793
+ value: 44.87153627706517
794
  - type: manhattan_spearman
795
+ value: 45.52862617925012
796
  - task:
797
  type: STS
798
  dataset:
 
803
  revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
804
  metrics:
805
  - type: cos_sim_pearson
806
+ value: 34.249579701429084
807
  - type: cos_sim_spearman
808
+ value: 37.30903127368978
809
  - type: euclidean_pearson
810
+ value: 35.129438425253355
811
  - type: euclidean_spearman
812
+ value: 37.308544018709085
813
  - type: manhattan_pearson
814
+ value: 35.08936153503652
815
  - type: manhattan_spearman
816
+ value: 37.25582901077839
817
  - task:
818
  type: STS
819
  dataset:
 
824
  revision: eea2b4fe26a775864c896887d910b76a8098ad3f
825
  metrics:
826
  - type: cos_sim_pearson
827
+ value: 61.29309637460004
828
  - type: cos_sim_spearman
829
+ value: 65.85136090376717
830
  - type: euclidean_pearson
831
+ value: 64.04783990953557
832
  - type: euclidean_spearman
833
+ value: 65.85036859610366
834
  - type: manhattan_pearson
835
+ value: 63.995852552712186
836
  - type: manhattan_spearman
837
+ value: 65.86508416749417
838
  - task:
839
  type: STS
840
  dataset:
 
845
  revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
846
  metrics:
847
  - type: cos_sim_pearson
848
+ value: 81.5595940455587
849
  - type: cos_sim_spearman
850
+ value: 82.72654634579749
851
  - type: euclidean_pearson
852
+ value: 82.4892721061365
853
  - type: euclidean_spearman
854
+ value: 82.72678504228253
855
  - type: manhattan_pearson
856
+ value: 82.4770861422454
857
  - type: manhattan_spearman
858
+ value: 82.71137469783162
859
  - task:
860
  type: Reranking
861
  dataset:
 
866
  revision: 76631901a18387f85eaa53e5450019b87ad58ef9
867
  metrics:
868
  - type: map
869
+ value: 66.6159547610527
870
  - type: mrr
871
+ value: 76.35739406347057
872
  - task:
873
  type: Retrieval
874
  dataset:
 
879
  revision: 8731a845f1bf500a4f111cf1070785c793d10e64
880
  metrics:
881
  - type: map_at_1
882
+ value: 27.878999999999998
883
  - type: map_at_10
884
+ value: 77.517
885
  - type: map_at_100
886
+ value: 81.139
887
  - type: map_at_1000
888
+ value: 81.204
889
  - type: map_at_3
890
+ value: 54.728
891
  - type: map_at_5
892
+ value: 67.128
893
  - type: mrr_at_1
894
+ value: 90.509
895
  - type: mrr_at_10
896
+ value: 92.964
897
  - type: mrr_at_100
898
+ value: 93.045
899
  - type: mrr_at_1000
900
+ value: 93.048
901
  - type: mrr_at_3
902
+ value: 92.551
903
  - type: mrr_at_5
904
+ value: 92.81099999999999
905
  - type: ndcg_at_1
906
+ value: 90.509
907
  - type: ndcg_at_10
908
+ value: 85.075
909
  - type: ndcg_at_100
910
+ value: 88.656
911
  - type: ndcg_at_1000
912
+ value: 89.25699999999999
913
  - type: ndcg_at_3
914
+ value: 86.58200000000001
915
  - type: ndcg_at_5
916
+ value: 85.138
917
  - type: precision_at_1
918
+ value: 90.509
919
  - type: precision_at_10
920
+ value: 42.05
921
  - type: precision_at_100
922
+ value: 5.013999999999999
923
  - type: precision_at_1000
924
+ value: 0.516
925
  - type: precision_at_3
926
+ value: 75.551
927
  - type: precision_at_5
928
+ value: 63.239999999999995
929
  - type: recall_at_1
930
+ value: 27.878999999999998
931
  - type: recall_at_10
932
+ value: 83.941
933
  - type: recall_at_100
934
+ value: 95.568
935
  - type: recall_at_1000
936
+ value: 98.55000000000001
937
  - type: recall_at_3
938
+ value: 56.374
939
  - type: recall_at_5
940
+ value: 70.435
941
  - task:
942
  type: Classification
943
  dataset:
 
948
  revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
949
  metrics:
950
  - type: accuracy
951
+ value: 53.687
952
  - type: f1
953
+ value: 51.86911933364655
954
  - task:
955
  type: Clustering
956
  dataset:
 
961
  revision: 5798586b105c0434e4f0fe5e767abe619442cf93
962
  metrics:
963
  - type: v_measure
964
+ value: 74.65887489872564
965
  - task:
966
  type: Clustering
967
  dataset:
 
972
  revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
973
  metrics:
974
  - type: v_measure
975
+ value: 69.00410995984436
976
  - task:
977
  type: Retrieval
978
  dataset:
 
985
  - type: map_at_1
986
  value: 59.4
987
  - type: map_at_10
988
+ value: 69.214
989
  - type: map_at_100
 
 
990
  value: 69.72699999999999
991
+ - type: map_at_1000
992
+ value: 69.743
993
  - type: map_at_3
994
  value: 67.717
995
  - type: map_at_5
996
+ value: 68.782
997
  - type: mrr_at_1
998
  value: 59.4
999
  - type: mrr_at_10
1000
+ value: 69.214
1001
  - type: mrr_at_100
 
 
1002
  value: 69.72699999999999
1003
+ - type: mrr_at_1000
1004
+ value: 69.743
1005
  - type: mrr_at_3
1006
  value: 67.717
1007
  - type: mrr_at_5
1008
+ value: 68.782
1009
  - type: ndcg_at_1
1010
  value: 59.4
1011
  - type: ndcg_at_10
1012
+ value: 73.32300000000001
1013
  - type: ndcg_at_100
1014
+ value: 75.591
1015
  - type: ndcg_at_1000
1016
+ value: 75.98700000000001
1017
  - type: ndcg_at_3
1018
  value: 70.339
1019
  - type: ndcg_at_5
1020
+ value: 72.246
1021
  - type: precision_at_1
1022
  value: 59.4
1023
  - type: precision_at_10
1024
+ value: 8.59
1025
  - type: precision_at_100
1026
  value: 0.96
1027
  - type: precision_at_1000
 
1029
  - type: precision_at_3
1030
  value: 25.967000000000002
1031
  - type: precision_at_5
1032
+ value: 16.5
1033
  - type: recall_at_1
1034
  value: 59.4
1035
  - type: recall_at_10
1036
+ value: 85.9
1037
  - type: recall_at_100
1038
  value: 96.0
1039
  - type: recall_at_1000
 
1041
  - type: recall_at_3
1042
  value: 77.9
1043
  - type: recall_at_5
1044
+ value: 82.5
1045
  - task:
1046
  type: Classification
1047
  dataset:
 
1052
  revision: 339287def212450dcaa9df8c22bf93e9980c7023
1053
  metrics:
1054
  - type: accuracy
1055
+ value: 88.53
1056
  - type: ap
1057
+ value: 73.56216166534062
1058
  - type: f1
1059
+ value: 87.06093694294485
1060
  ---
1061
+
1062
+
1063
  ## acge model
1064
 
1065
  acge是一个通用的文本编码模型,是一个可变长度的向量化模型,使用了[Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147),如图所示:
 
1079
  #### C-MTEB leaderboard (Chinese)
1080
 
1081
  测试的时候因为数据的随机性、显卡、推理的数据类型导致每次推理的结果不一致,我总共测试了4次,不同的显卡(A10 A100),不同的数据类型,测试结果放在了result文件夹中,选取了一个精度最低的测试作为最终的精度测试。
1082
+ 根据[infgrad](https://huggingface.co/infgrad)的建议,选取不用的输入的长度作为测试,Sequence Length为512时测试最佳。
1083
 
1084
  | Model Name | GPU | tensor-type | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) |
1085
  |:------------------:|:---------------:|:---------:|:---------------:|:------------:|:------------------:|:--------------:|:-----------------------:|:-------------:|:-------------:|:-------:|:-------:|:-------:|
1086
+ | acge_text_embedding | NVIDIA TESLA A10 | bfloat16 | 0.65 | 1792 | 1024 | 68.91 | 72.76 | 58.22 | 87.82 | 67.67 | 72.48 | 62.24 |
1087
+ | acge_text_embedding | NVIDIA TESLA A100 | bfloat16 | 0.65 | 1792 | 1024 | 68.91 | 72.77 | 58.35 | 87.82 | 67.53 | 72.48 | 62.24 |
1088
  | acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 1024 | 68.99 | 72.76 | 58.68 | 87.84 | 67.89 | 72.49 | 62.24 |
1089
  | acge_text_embedding | NVIDIA TESLA A100 | float32 | 0.65 | 1792 | 1024 | 68.98 | 72.76 | 58.58 | 87.83 | 67.91 | 72.49 | 62.24 |
1090
+ | acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 768 | 68.95 | 72.76 | 58.68 | 87.84 | 67.86 | 72.48 | 62.07 |
1091
+ | acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 512 | 69.07 | 72.75 | 58.7 | 87.84 | 67.99 | 72.93 | 62.09 |
1092
 
1093
  #### Reproduce our results
1094