--- library_name: transformers language: - bem license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - BIG_C/BEMBA metrics: - wer model-index: - name: facebook/w2v-bert-2.0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: BIG_C type: BIG_C/BEMBA metrics: - name: Wer type: wer value: 0.4003345055322069 --- # facebook/w2v-bert-2.0 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the BIG_C dataset. It achieves the following results on the evaluation set: - Loss: 0.4054 - Wer: 0.4003 - Cer: 0.0766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.025 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:| | 1.0933 | 1.0 | 41178 | 0.5653 | 0.4240 | 0.1120 | | 0.5359 | 2.0 | 82356 | 0.5139 | 0.3772 | 0.1026 | | 0.4943 | 3.0 | 123534 | 0.4832 | 0.3560 | 0.0996 | | 0.4599 | 4.0 | 164712 | 0.4774 | 0.3378 | 0.0948 | | 0.4331 | 5.0 | 205890 | 0.4882 | 0.3305 | 0.0931 | | 0.4092 | 6.0 | 247068 | 0.4580 | 0.3281 | 0.0921 | | 0.3826 | 7.0 | 288246 | 0.4873 | 0.3232 | 0.0903 | | 0.3536 | 8.0 | 329424 | 0.5067 | 0.3227 | 0.0908 | | 0.3231 | 9.0 | 370602 | 0.5101 | 0.3274 | 0.0938 | | 0.2924 | 10.0 | 411780 | 0.5481 | 0.3290 | 0.0927 | | 0.263 | 11.0 | 452958 | 0.5684 | 0.3320 | 0.0927 | | 0.2364 | 12.0 | 494136 | 0.5973 | 0.3362 | 0.0935 | | 0.2135 | 13.0 | 535314 | 0.6344 | 0.3405 | 0.0951 | | 0.1941 | 14.0 | 576492 | 0.7075 | 0.3370 | 0.0939 | | 0.1765 | 15.0 | 617670 | 0.7800 | 0.3398 | 0.0947 | | 0.1615 | 16.0 | 658848 | 0.8164 | 0.3389 | 0.0941 | | 0.1482 | 17.0 | 700026 | 0.8562 | 0.3410 | 0.0949 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.2.0+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1