File size: 6,040 Bytes
e31a670
 
2a4da70
 
 
 
8d0e18d
 
2a4da70
 
 
e31a670
 
2a4da70
 
e31a670
2a4da70
 
e31a670
2a4da70
8d0e18d
 
 
 
e31a670
2a4da70
e31a670
2a4da70
e31a670
2a4da70
e31a670
2a4da70
e31a670
2a4da70
e31a670
2a4da70
e31a670
2a4da70
e31a670
2a4da70
e31a670
2a4da70
 
 
 
 
 
 
 
 
 
 
e31a670
8d0e18d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a4da70
e31a670
2a4da70
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: bambara-mms-10-hours-oza75bambara-asr-hf
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/asr-africa-research-team/ASR%20Africa/runs/g15oyt2j)
# bambara-mms-10-hours-oza75bambara-asr-hf

This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1148
- Wer: 0.5199
- Cer: 0.2465

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-------:|:-----:|:---------------:|:------:|:------:|
| 1.5938        | 0.8313  | 500   | 1.2774          | 0.8294 | 0.3861 |
| 1.5142        | 1.6625  | 1000  | 1.2540          | 0.7729 | 0.3702 |
| 1.3973        | 2.4938  | 1500  | 1.2161          | 0.7125 | 0.3521 |
| 1.326         | 3.3250  | 2000  | 1.1719          | 0.7260 | 0.3426 |
| 1.2698        | 4.1563  | 2500  | 1.1710          | 0.6738 | 0.3350 |
| 1.218         | 4.9875  | 3000  | 1.0692          | 0.6507 | 0.3147 |
| 1.1672        | 5.8188  | 3500  | 1.0691          | 0.6408 | 0.3071 |
| 1.1307        | 6.6500  | 4000  | 1.0518          | 0.6405 | 0.3035 |
| 1.079         | 7.4813  | 4500  | 1.1091          | 0.6304 | 0.2972 |
| 1.0474        | 8.3126  | 5000  | 1.0662          | 0.6240 | 0.2994 |
| 1.0169        | 9.1438  | 5500  | 1.0669          | 0.6173 | 0.2937 |
| 0.9753        | 9.9751  | 6000  | 1.0039          | 0.6329 | 0.3027 |
| 0.9303        | 10.8063 | 6500  | 0.9909          | 0.6101 | 0.2863 |
| 0.8867        | 11.6376 | 7000  | 1.0058          | 0.5929 | 0.2888 |
| 0.8537        | 12.4688 | 7500  | 1.0321          | 0.6015 | 0.2859 |
| 0.8268        | 13.3001 | 8000  | 1.0427          | 0.5960 | 0.2808 |
| 0.7908        | 14.1313 | 8500  | 1.0816          | 0.5847 | 0.2791 |
| 0.7625        | 14.9626 | 9000  | 1.0817          | 0.5839 | 0.2748 |
| 0.7254        | 15.7938 | 9500  | 1.1185          | 0.5764 | 0.2768 |
| 0.6817        | 16.6251 | 10000 | 1.1043          | 0.5658 | 0.2749 |
| 0.6602        | 17.4564 | 10500 | 1.1736          | 0.5640 | 0.2708 |
| 0.6244        | 18.2876 | 11000 | 1.1894          | 0.5725 | 0.2721 |
| 0.6073        | 19.1189 | 11500 | 1.2478          | 0.5647 | 0.2737 |
| 0.5752        | 19.9501 | 12000 | 1.1698          | 0.5671 | 0.2770 |
| 0.5457        | 20.7814 | 12500 | 1.1864          | 0.5587 | 0.2697 |
| 0.5231        | 21.6126 | 13000 | 1.1907          | 0.5592 | 0.2693 |
| 0.5018        | 22.4439 | 13500 | 1.1874          | 0.5675 | 0.2707 |
| 0.4756        | 23.2751 | 14000 | 1.2167          | 0.5626 | 0.2664 |
| 0.458         | 24.1064 | 14500 | 1.2149          | 0.5592 | 0.2712 |
| 0.4301        | 24.9377 | 15000 | 1.3165          | 0.5499 | 0.2660 |
| 0.4165        | 25.7689 | 15500 | 1.2436          | 0.5689 | 0.2713 |
| 0.3897        | 26.6002 | 16000 | 1.3646          | 0.5470 | 0.2624 |
| 0.3743        | 27.4314 | 16500 | 1.4319          | 0.5477 | 0.2623 |
| 0.355         | 28.2627 | 17000 | 1.4645          | 0.5580 | 0.2683 |
| 0.3414        | 29.0939 | 17500 | 1.5373          | 0.5508 | 0.2590 |
| 0.3251        | 29.9252 | 18000 | 1.4997          | 0.5473 | 0.2648 |
| 0.3049        | 30.7564 | 18500 | 1.5231          | 0.5494 | 0.2617 |
| 0.2924        | 31.5877 | 19000 | 1.6212          | 0.5490 | 0.2610 |
| 0.2807        | 32.4190 | 19500 | 1.5959          | 0.5571 | 0.2661 |
| 0.2669        | 33.2502 | 20000 | 1.6300          | 0.5478 | 0.2628 |
| 0.2575        | 34.0815 | 20500 | 1.7042          | 0.5447 | 0.2616 |
| 0.2426        | 34.9127 | 21000 | 1.6750          | 0.5430 | 0.2607 |
| 0.2301        | 35.7440 | 21500 | 1.7449          | 0.5421 | 0.2596 |
| 0.2202        | 36.5752 | 22000 | 1.6587          | 0.5418 | 0.2584 |
| 0.213         | 37.4065 | 22500 | 1.7982          | 0.5361 | 0.2546 |
| 0.2092        | 38.2377 | 23000 | 1.7748          | 0.5271 | 0.2537 |
| 0.1956        | 39.0690 | 23500 | 1.8427          | 0.5310 | 0.2562 |
| 0.1869        | 39.9002 | 24000 | 1.7940          | 0.5275 | 0.2541 |
| 0.1799        | 40.7315 | 24500 | 1.7794          | 0.5275 | 0.2520 |
| 0.1727        | 41.5628 | 25000 | 1.9008          | 0.5374 | 0.2540 |
| 0.1681        | 42.3940 | 25500 | 1.9119          | 0.5297 | 0.2522 |
| 0.1596        | 43.2253 | 26000 | 1.9836          | 0.5258 | 0.2472 |
| 0.1569        | 44.0565 | 26500 | 1.9823          | 0.5195 | 0.2472 |
| 0.1516        | 44.8878 | 27000 | 1.9638          | 0.5179 | 0.2483 |
| 0.1482        | 45.7190 | 27500 | 2.0763          | 0.5146 | 0.2468 |
| 0.1379        | 46.5503 | 28000 | 2.0760          | 0.5234 | 0.2483 |
| 0.1407        | 47.3815 | 28500 | 2.0269          | 0.5220 | 0.2482 |
| 0.1331        | 48.2128 | 29000 | 2.0818          | 0.5221 | 0.2481 |
| 0.1328        | 49.0441 | 29500 | 2.0947          | 0.5205 | 0.2467 |
| 0.1308        | 49.8753 | 30000 | 2.1148          | 0.5199 | 0.2465 |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.1.0+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3