--- library_name: transformers language: - xh license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer datasets: - NCHLT_speech_corpus metrics: - wer model-index: - name: facebook mms-1b-all xhosa - Beijuka Bruno results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: NCHLT_speech_corpus/Xhosa type: NCHLT_speech_corpus metrics: - name: Wer type: wer value: 0.7415725069154672 --- # facebook mms-1b-all xhosa - Beijuka Bruno This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the NCHLT_speech_corpus/Xhosa dataset. It achieves the following results on the evaluation set: - Loss: 0.5077 - Model Preparation Time: 0.0185 - Wer: 0.7416 - Cer: 0.1466 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer | |:-------------:|:-----:|:------:|:---------------:|:----------------------:|:------:|:------:| | 3.0339 | 1.0 | 2604 | 0.2173 | 0.0185 | 0.3580 | 0.0532 | | 1.074 | 2.0 | 5208 | 0.2030 | 0.0185 | 0.3267 | 0.0492 | | 1.007 | 3.0 | 7812 | 0.2000 | 0.0185 | 0.3209 | 0.0485 | | 0.9601 | 4.0 | 10416 | 0.1937 | 0.0185 | 0.3047 | 0.0468 | | 0.9269 | 5.0 | 13020 | 0.1908 | 0.0185 | 0.3071 | 0.0460 | | 0.8968 | 6.0 | 15624 | 0.1912 | 0.0185 | 0.3012 | 0.0455 | | 0.8704 | 7.0 | 18228 | 0.1900 | 0.0185 | 0.2990 | 0.0450 | | 0.854 | 8.0 | 20832 | 0.1900 | 0.0185 | 0.2993 | 0.0452 | | 0.8287 | 9.0 | 23436 | 0.1888 | 0.0185 | 0.3047 | 0.0454 | | 0.8122 | 10.0 | 26040 | 0.1881 | 0.0185 | 0.2976 | 0.0445 | | 0.7944 | 11.0 | 28644 | 0.1850 | 0.0185 | 0.2916 | 0.0437 | | 0.776 | 12.0 | 31248 | 0.1807 | 0.0185 | 0.2820 | 0.0426 | | 0.7557 | 13.0 | 33852 | 0.1862 | 0.0185 | 0.2858 | 0.0429 | | 0.7484 | 14.0 | 36456 | 0.1818 | 0.0185 | 0.2845 | 0.0428 | | 0.7347 | 15.0 | 39060 | 0.1842 | 0.0185 | 0.2845 | 0.0434 | | 0.7262 | 16.0 | 41664 | 0.1830 | 0.0185 | 0.2873 | 0.0434 | | 0.713 | 17.0 | 44268 | 0.1829 | 0.0185 | 0.2850 | 0.0431 | | 0.6957 | 18.0 | 46872 | 0.1829 | 0.0185 | 0.2803 | 0.0420 | | 0.6867 | 19.0 | 49476 | 0.1813 | 0.0185 | 0.2750 | 0.0414 | | 0.6716 | 20.0 | 52080 | 0.1812 | 0.0185 | 0.2743 | 0.0416 | | 0.668 | 21.0 | 54684 | 0.1838 | 0.0185 | 0.2773 | 0.0423 | | 0.662 | 22.0 | 57288 | 0.1875 | 0.0185 | 0.2743 | 0.0418 | | 0.6471 | 23.0 | 59892 | 0.1828 | 0.0185 | 0.2779 | 0.0422 | | 0.6414 | 24.0 | 62496 | 0.1863 | 0.0185 | 0.2770 | 0.0416 | | 0.6322 | 25.0 | 65100 | 0.1851 | 0.0185 | 0.2754 | 0.0412 | | 0.6238 | 26.0 | 67704 | 0.1847 | 0.0185 | 0.2811 | 0.0422 | | 0.6151 | 27.0 | 70308 | 0.1830 | 0.0185 | 0.2682 | 0.0408 | | 0.6046 | 28.0 | 72912 | 0.1811 | 0.0185 | 0.2700 | 0.0408 | | 0.5973 | 29.0 | 75516 | 0.1841 | 0.0185 | 0.2694 | 0.0412 | | 0.5897 | 30.0 | 78120 | 0.1826 | 0.0185 | 0.2653 | 0.0404 | | 0.5855 | 31.0 | 80724 | 0.1826 | 0.0185 | 0.2653 | 0.0407 | | 0.5738 | 32.0 | 83328 | 0.1801 | 0.0185 | 0.2712 | 0.0411 | | 0.5664 | 33.0 | 85932 | 0.1837 | 0.0185 | 0.2682 | 0.0408 | | 0.5607 | 34.0 | 88536 | 0.1870 | 0.0185 | 0.2646 | 0.0405 | | 0.5556 | 35.0 | 91140 | 0.1848 | 0.0185 | 0.2665 | 0.0407 | | 0.5493 | 36.0 | 93744 | 0.1822 | 0.0185 | 0.2597 | 0.0395 | | 0.5426 | 37.0 | 96348 | 0.1833 | 0.0185 | 0.2693 | 0.0405 | | 0.536 | 38.0 | 98952 | 0.1843 | 0.0185 | 0.2672 | 0.0404 | | 0.5231 | 39.0 | 101556 | 0.1833 | 0.0185 | 0.2696 | 0.0405 | | 0.5204 | 40.0 | 104160 | 0.1833 | 0.0185 | 0.2663 | 0.0401 | | 0.5167 | 41.0 | 106764 | 0.1818 | 0.0185 | 0.2637 | 0.0395 | | 0.513 | 42.0 | 109368 | 0.1842 | 0.0185 | 0.2643 | 0.0396 | | 0.506 | 43.0 | 111972 | 0.1876 | 0.0185 | 0.2661 | 0.0401 | | 0.4976 | 44.0 | 114576 | 0.1890 | 0.0185 | 0.2615 | 0.0400 | | 0.4904 | 45.0 | 117180 | 0.1842 | 0.0185 | 0.2587 | 0.0392 | | 0.4864 | 46.0 | 119784 | 0.1886 | 0.0185 | 0.2600 | 0.0391 | | 0.4814 | 47.0 | 122388 | 0.1849 | 0.0185 | 0.2627 | 0.0398 | | 0.4821 | 48.0 | 124992 | 0.1860 | 0.0185 | 0.2583 | 0.0390 | | 0.4662 | 49.0 | 127596 | 0.1906 | 0.0185 | 0.2624 | 0.0397 | | 0.4632 | 50.0 | 130200 | 0.1881 | 0.0185 | 0.2603 | 0.0393 | | 0.465 | 51.0 | 132804 | 0.1876 | 0.0185 | 0.2627 | 0.0396 | | 0.4549 | 52.0 | 135408 | 0.1898 | 0.0185 | 0.2596 | 0.0393 | | 0.4532 | 53.0 | 138012 | 0.1916 | 0.0185 | 0.2606 | 0.0395 | | 0.4478 | 54.0 | 140616 | 0.1912 | 0.0185 | 0.2617 | 0.0398 | | 0.4418 | 55.0 | 143220 | 0.1935 | 0.0185 | 0.2600 | 0.0393 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.1.0+cu118 - Datasets 3.2.0 - Tokenizers 0.21.0