--- base_model: facebook/wav2vec2-xls-r-300m datasets: - fleurs license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: wav2vec2-xlsr-fula-google-fleurs-5-hours results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: fleurs type: fleurs config: ff_sn split: None args: ff_sn metrics: - type: wer value: 0.646049896049896 name: Wer --- # wav2vec2-xlsr-fula-google-fleurs-5-hours This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 1.1949 - Wer: 0.6460 - Cer: 0.2359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 7.1138 | 10.96 | 200 | 2.9561 | 1.0 | 1.0 | | 2.8708 | 21.92 | 400 | 2.0221 | 1.0 | 0.6369 | | 1.0031 | 32.88 | 600 | 0.9750 | 0.6509 | 0.2222 | | 0.4471 | 43.84 | 800 | 1.1949 | 0.6460 | 0.2359 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu118 - Datasets 2.17.0 - Tokenizers 0.15.2