|
import torch
|
|
import torchvision
|
|
import torchvision.transforms as transforms
|
|
from torch.utils.data import DataLoader
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
from resnet_model import ResNet50
|
|
from tqdm import tqdm
|
|
from torchvision import datasets
|
|
from checkpoint import save_checkpoint, load_checkpoint
|
|
import matplotlib.pyplot as plt
|
|
from torchvision.utils import make_grid
|
|
import albumentations as A
|
|
from albumentations.pytorch import ToTensorV2
|
|
import numpy as np
|
|
from torchsummary import summary
|
|
|
|
|
|
train_transform = A.Compose([
|
|
A.RandomResizedCrop(height=224, width=224, scale=(0.08, 1.0), ratio=(3/4, 4/3), p=1.0),
|
|
A.HorizontalFlip(p=0.5),
|
|
A.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1, p=0.8),
|
|
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
|
|
ToTensorV2()
|
|
])
|
|
|
|
test_transform = A.Compose([
|
|
A.Resize(height=256, width=256),
|
|
A.CenterCrop(height=224, width=224),
|
|
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
|
|
ToTensorV2()
|
|
])
|
|
|
|
|
|
trainset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/train', transform=lambda img: train_transform(image=np.array(img))['image'])
|
|
trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=8, pin_memory=True)
|
|
|
|
testset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/val', transform=lambda img: test_transform(image=np.array(img))['image'])
|
|
testloader = DataLoader(testset, batch_size=500, shuffle=False, num_workers=8, pin_memory=True)
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
print( device )
|
|
model = ResNet50()
|
|
model = torch.nn.DataParallel(model)
|
|
model = model.to(device)
|
|
summary(model, input_size=(3, 224, 224))
|
|
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
|
|
|
|
|
|
from torch.amp import autocast
|
|
|
|
def train(model, device, train_loader, optimizer, criterion, epoch, accumulation_steps=4):
|
|
model.train()
|
|
running_loss = 0.0
|
|
correct1 = 0
|
|
correct5 = 0
|
|
total = 0
|
|
pbar = tqdm(train_loader)
|
|
|
|
for batch_idx, (inputs, targets) in enumerate(pbar):
|
|
inputs, targets = inputs.to(device), targets.to(device)
|
|
|
|
with autocast(device_type='cuda'):
|
|
outputs = model(inputs)
|
|
loss = criterion(outputs, targets) / accumulation_steps
|
|
|
|
loss.backward()
|
|
|
|
if (batch_idx + 1) % accumulation_steps == 0 or (batch_idx + 1) == len(train_loader):
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
|
|
running_loss += loss.item() * accumulation_steps
|
|
_, predicted = outputs.topk(5, 1, True, True)
|
|
total += targets.size(0)
|
|
correct1 += predicted[:, :1].eq(targets.view(-1, 1).expand_as(predicted[:, :1])).sum().item()
|
|
correct5 += predicted.eq(targets.view(-1, 1).expand_as(predicted)).sum().item()
|
|
|
|
pbar.set_description(desc=f'Epoch {epoch} | Loss: {running_loss / (batch_idx + 1):.4f} | Top-1 Acc: {100. * correct1 / total:.2f} | Top-5 Acc: {100. * correct5 / total:.2f}')
|
|
|
|
if (batch_idx + 1) % 50 == 0:
|
|
torch.cuda.empty_cache()
|
|
|
|
return 100. * correct1 / total, 100. * correct5 / total, running_loss / len(train_loader)
|
|
|
|
|
|
def test(model, device, test_loader, criterion):
|
|
model.eval()
|
|
test_loss = 0
|
|
correct1 = 0
|
|
correct5 = 0
|
|
total = 0
|
|
misclassified_images = []
|
|
misclassified_labels = []
|
|
misclassified_preds = []
|
|
|
|
with torch.no_grad():
|
|
for inputs, targets in test_loader:
|
|
inputs, targets = inputs.to(device), targets.to(device)
|
|
outputs = model(inputs)
|
|
loss = criterion(outputs, targets)
|
|
|
|
test_loss += loss.item()
|
|
_, predicted = outputs.topk(5, 1, True, True)
|
|
total += targets.size(0)
|
|
correct1 += predicted[:, :1].eq(targets.view(-1, 1).expand_as(predicted[:, :1])).sum().item()
|
|
correct5 += predicted.eq(targets.view(-1, 1).expand_as(predicted)).sum().item()
|
|
|
|
|
|
for i in range(inputs.size(0)):
|
|
if targets[i] not in predicted[i, :1]:
|
|
misclassified_images.append(inputs[i].cpu())
|
|
misclassified_labels.append(targets[i].cpu())
|
|
misclassified_preds.append(predicted[i, :1].cpu())
|
|
|
|
test_accuracy1 = 100. * correct1 / total
|
|
test_accuracy5 = 100. * correct5 / total
|
|
print(f'Test Loss: {test_loss/len(test_loader):.4f}, Top-1 Accuracy: {test_accuracy1:.2f}, Top-5 Accuracy: {test_accuracy5:.2f}')
|
|
return test_accuracy1, test_accuracy5, test_loss / len(test_loader), misclassified_images, misclassified_labels, misclassified_preds
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
checkpoint_path = "checkpoint.pth"
|
|
best_loss = float('inf')
|
|
patience = 5
|
|
patience_counter = 0
|
|
|
|
try:
|
|
model, optimizer, best_test_accuracy = load_checkpoint(model, optimizer, checkpoint_path)
|
|
except FileNotFoundError:
|
|
print("No checkpoint found, starting from scratch.")
|
|
|
|
|
|
results = []
|
|
learning_rates = []
|
|
|
|
for epoch in range(1, 26):
|
|
train_accuracy1, train_accuracy5, train_loss = train(model, device, trainloader, optimizer, criterion, epoch)
|
|
test_accuracy1, test_accuracy5, test_loss, misclassified_images, misclassified_labels, misclassified_preds = test(model, device, testloader, criterion)
|
|
print(f'Epoch {epoch} | Train Top-1 Acc: {train_accuracy1:.2f} | Train Top-5 Acc: {train_accuracy5:.2f} | Test Top-1 Acc: {test_accuracy1:.2f} | Test Top-5 Acc: {test_accuracy5:.2f}')
|
|
|
|
|
|
results.append((epoch, train_accuracy1, train_accuracy5, test_accuracy1, test_accuracy5, train_loss, test_loss))
|
|
learning_rates.append(optimizer.param_groups[0]['lr'])
|
|
|
|
if test_loss < best_loss:
|
|
best_loss = test_loss
|
|
patience_counter = 0
|
|
save_checkpoint(model, optimizer, epoch, test_loss, checkpoint_path)
|
|
else:
|
|
patience_counter += 1
|
|
|
|
if patience_counter >= patience:
|
|
print("Early stopping triggered. Training terminated.")
|
|
break
|
|
|
|
|
|
if epoch == 25:
|
|
|
|
if misclassified_images:
|
|
print("\nDisplaying some misclassified samples from the last epoch:")
|
|
misclassified_grid = make_grid(misclassified_images[:16], nrow=4, normalize=True, scale_each=True)
|
|
plt.figure(figsize=(8, 8))
|
|
plt.imshow(misclassified_grid.permute(1, 2, 0))
|
|
plt.title("Misclassified Samples")
|
|
plt.axis('off')
|
|
plt.show()
|
|
|
|
|
|
print("\nEpoch\tTrain Top-1 Accuracy\tTest Top-1 Accuracy")
|
|
for epoch, train_acc1, test_acc1, *_ in results:
|
|
print(f"{epoch}\t{train_acc1:.2f}\t{test_acc1:.2f}")
|
|
|
|
|
|
epochs = [r[0] for r in results]
|
|
train_acc1 = [r[1] for r in results]
|
|
train_acc5 = [r[2] for r in results]
|
|
test_acc1 = [r[3] for r in results]
|
|
test_acc5 = [r[4] for r in results]
|
|
train_losses = [r[5] for r in results]
|
|
test_losses = [r[6] for r in results]
|
|
|
|
plt.figure(figsize=(12, 8))
|
|
plt.subplot(2, 2, 1)
|
|
plt.plot(epochs, train_acc1, label='Train Top-1 Acc')
|
|
plt.plot(epochs, test_acc1, label='Test Top-1 Acc')
|
|
plt.xlabel('Epoch')
|
|
plt.ylabel('Accuracy')
|
|
plt.legend()
|
|
plt.title('Top-1 Accuracy')
|
|
|
|
plt.subplot(2, 2, 2)
|
|
plt.plot(epochs, train_acc5, label='Train Top-5 Acc')
|
|
plt.plot(epochs, test_acc5, label='Test Top-5 Acc')
|
|
plt.xlabel('Epoch')
|
|
plt.ylabel('Accuracy')
|
|
plt.legend()
|
|
plt.title('Top-5 Accuracy')
|
|
|
|
plt.subplot(2, 2, 3)
|
|
plt.plot(epochs, train_losses, label='Train Loss')
|
|
plt.plot(epochs, test_losses, label='Test Loss')
|
|
plt.xlabel('Epoch')
|
|
plt.ylabel('Loss')
|
|
plt.legend()
|
|
plt.title('Loss')
|
|
|
|
plt.subplot(2, 2, 4)
|
|
plt.plot(epochs, learning_rates, label='Learning Rate')
|
|
plt.xlabel('Epoch')
|
|
plt.ylabel('Learning Rate')
|
|
plt.legend()
|
|
plt.title('Learning Rate')
|
|
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|