atiwari751 commited on
Commit
3352589
·
1 Parent(s): 15b2f03

modularised resnet_execute into individual scripts

Browse files
Files changed (4) hide show
  1. data_utils.py +31 -0
  2. main.py +62 -0
  3. train_test.py +68 -0
  4. utils.py +65 -0
data_utils.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torchvision import datasets
2
+ from torch.utils.data import DataLoader
3
+ import numpy as np
4
+ import albumentations as A
5
+ from albumentations.pytorch import ToTensorV2
6
+
7
+ def get_train_transform():
8
+ return A.Compose([
9
+ A.RandomResizedCrop(height=224, width=224, scale=(0.08, 1.0), ratio=(3/4, 4/3), p=1.0),
10
+ A.HorizontalFlip(p=0.5),
11
+ A.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1, p=0.8),
12
+ A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
13
+ ToTensorV2()
14
+ ])
15
+
16
+ def get_test_transform():
17
+ return A.Compose([
18
+ A.Resize(height=256, width=256),
19
+ A.CenterCrop(height=224, width=224),
20
+ A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
21
+ ToTensorV2()
22
+ ])
23
+
24
+ def get_data_loaders(train_transform, test_transform, batch_size_train=128, batch_size_test=500):
25
+ trainset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/train', transform=lambda img: train_transform(image=np.array(img))['image'])
26
+ trainloader = DataLoader(trainset, batch_size=batch_size_train, shuffle=True, num_workers=8, pin_memory=True)
27
+
28
+ testset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/val', transform=lambda img: test_transform(image=np.array(img))['image'])
29
+ testloader = DataLoader(testset, batch_size=batch_size_test, shuffle=False, num_workers=8, pin_memory=True)
30
+
31
+ return trainloader, testloader
main.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.optim as optim
4
+ from resnet_model import ResNet50
5
+ from data_utils import get_train_transform, get_test_transform, get_data_loaders
6
+ from train_test import train, test
7
+ from utils import save_checkpoint, load_checkpoint, plot_training_curves, plot_misclassified_samples
8
+
9
+ def main():
10
+ # Initialize model, loss function, and optimizer
11
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
+ model = ResNet50().to(device)
13
+ criterion = nn.CrossEntropyLoss()
14
+ optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
15
+
16
+ # Load data
17
+ train_transform = get_train_transform()
18
+ test_transform = get_test_transform()
19
+ trainloader, testloader = get_data_loaders(train_transform, test_transform)
20
+
21
+ # Load checkpoint if it exists
22
+ checkpoint_path = "checkpoint.pth"
23
+ try:
24
+ model, optimizer, start_epoch, _ = load_checkpoint(model, optimizer, checkpoint_path)
25
+ except FileNotFoundError:
26
+ print("No checkpoint found, starting from scratch.")
27
+ start_epoch = 1
28
+
29
+ # Store results for plotting
30
+ results = []
31
+ learning_rates = []
32
+
33
+ # Training loop
34
+ for epoch in range(start_epoch, 26):
35
+ train_accuracy1, train_accuracy5, train_loss = train(model, device, trainloader, optimizer, criterion, epoch)
36
+ test_accuracy1, test_accuracy5, test_loss, misclassified_images, misclassified_labels, misclassified_preds = test(model, device, testloader, criterion)
37
+ print(f'Epoch {epoch} | Train Top-1 Acc: {train_accuracy1:.2f} | Test Top-1 Acc: {test_accuracy1:.2f}')
38
+
39
+ # Append results for this epoch
40
+ results.append((epoch, train_accuracy1, train_accuracy5, test_accuracy1, test_accuracy5, train_loss, test_loss))
41
+ learning_rates.append(optimizer.param_groups[0]['lr'])
42
+
43
+ # Save checkpoint
44
+ save_checkpoint(model, optimizer, epoch, test_loss, checkpoint_path)
45
+
46
+ # Extract results for plotting
47
+ epochs = [r[0] for r in results]
48
+ train_acc1 = [r[1] for r in results]
49
+ train_acc5 = [r[2] for r in results]
50
+ test_acc1 = [r[3] for r in results]
51
+ test_acc5 = [r[4] for r in results]
52
+ train_losses = [r[5] for r in results]
53
+ test_losses = [r[6] for r in results]
54
+
55
+ # Plot training curves
56
+ plot_training_curves(epochs, train_acc1, test_acc1, train_acc5, test_acc5, train_losses, test_losses, learning_rates)
57
+
58
+ # Plot misclassified samples
59
+ plot_misclassified_samples(misclassified_images, misclassified_labels, misclassified_preds, classes=['class1', 'class2', ...]) # Replace with actual class names
60
+
61
+ if __name__ == '__main__':
62
+ main()
train_test.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from tqdm import tqdm
3
+ from torch.amp import autocast
4
+
5
+ def train(model, device, train_loader, optimizer, criterion, epoch, accumulation_steps=4):
6
+ model.train()
7
+ running_loss = 0.0
8
+ correct1 = 0
9
+ correct5 = 0
10
+ total = 0
11
+ pbar = tqdm(train_loader)
12
+
13
+ for batch_idx, (inputs, targets) in enumerate(pbar):
14
+ inputs, targets = inputs.to(device), targets.to(device)
15
+
16
+ with autocast(device_type='cuda'):
17
+ outputs = model(inputs)
18
+ loss = criterion(outputs, targets) / accumulation_steps
19
+
20
+ loss.backward()
21
+
22
+ if (batch_idx + 1) % accumulation_steps == 0 or (batch_idx + 1) == len(train_loader):
23
+ optimizer.step()
24
+ optimizer.zero_grad()
25
+
26
+ running_loss += loss.item() * accumulation_steps
27
+ _, predicted = outputs.topk(5, 1, True, True)
28
+ total += targets.size(0)
29
+ correct1 += predicted[:, :1].eq(targets.view(-1, 1).expand_as(predicted[:, :1])).sum().item()
30
+ correct5 += predicted.eq(targets.view(-1, 1).expand_as(predicted)).sum().item()
31
+
32
+ pbar.set_description(desc=f'Epoch {epoch} | Loss: {running_loss / (batch_idx + 1):.4f} | Top-1 Acc: {100. * correct1 / total:.2f} | Top-5 Acc: {100. * correct5 / total:.2f}')
33
+
34
+ return 100. * correct1 / total, 100. * correct5 / total, running_loss / len(train_loader)
35
+
36
+ def test(model, device, test_loader, criterion):
37
+ model.eval()
38
+ test_loss = 0
39
+ correct1 = 0
40
+ correct5 = 0
41
+ total = 0
42
+ misclassified_images = []
43
+ misclassified_labels = []
44
+ misclassified_preds = []
45
+
46
+ with torch.no_grad():
47
+ for inputs, targets in test_loader:
48
+ inputs, targets = inputs.to(device), targets.to(device)
49
+ outputs = model(inputs)
50
+ loss = criterion(outputs, targets)
51
+
52
+ test_loss += loss.item()
53
+ _, predicted = outputs.topk(5, 1, True, True)
54
+ total += targets.size(0)
55
+ correct1 += predicted[:, :1].eq(targets.view(-1, 1).expand_as(predicted[:, :1])).sum().item()
56
+ correct5 += predicted.eq(targets.view(-1, 1).expand_as(predicted)).sum().item()
57
+
58
+ # Collect misclassified samples
59
+ for i in range(inputs.size(0)):
60
+ if targets[i] not in predicted[i, :1]:
61
+ misclassified_images.append(inputs[i].cpu())
62
+ misclassified_labels.append(targets[i].cpu())
63
+ misclassified_preds.append(predicted[i, :1].cpu())
64
+
65
+ test_accuracy1 = 100. * correct1 / total
66
+ test_accuracy5 = 100. * correct5 / total
67
+ print(f'Test Loss: {test_loss/len(test_loader):.4f}, Top-1 Accuracy: {test_accuracy1:.2f}, Top-5 Accuracy: {test_accuracy5:.2f}')
68
+ return test_accuracy1, test_accuracy5, test_loss / len(test_loader), misclassified_images, misclassified_labels, misclassified_preds
utils.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import matplotlib.pyplot as plt
3
+ from torchvision.utils import make_grid
4
+
5
+ def save_checkpoint(model, optimizer, epoch, loss, path):
6
+ torch.save({
7
+ 'epoch': epoch,
8
+ 'model_state_dict': model.state_dict(),
9
+ 'optimizer_state_dict': optimizer.state_dict(),
10
+ 'loss': loss,
11
+ }, path)
12
+
13
+ def load_checkpoint(model, optimizer, path):
14
+ checkpoint = torch.load(path)
15
+ model.load_state_dict(checkpoint['model_state_dict'])
16
+ optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
17
+ epoch = checkpoint['epoch']
18
+ loss = checkpoint['loss']
19
+ return model, optimizer, epoch, loss
20
+
21
+ def plot_training_curves(epochs, train_acc1, test_acc1, train_acc5, test_acc5, train_losses, test_losses, learning_rates):
22
+ plt.figure(figsize=(12, 8))
23
+ plt.subplot(2, 2, 1)
24
+ plt.plot(epochs, train_acc1, label='Train Top-1 Acc')
25
+ plt.plot(epochs, test_acc1, label='Test Top-1 Acc')
26
+ plt.xlabel('Epoch')
27
+ plt.ylabel('Accuracy')
28
+ plt.legend()
29
+ plt.title('Top-1 Accuracy')
30
+
31
+ plt.subplot(2, 2, 2)
32
+ plt.plot(epochs, train_acc5, label='Train Top-5 Acc')
33
+ plt.plot(epochs, test_acc5, label='Test Top-5 Acc')
34
+ plt.xlabel('Epoch')
35
+ plt.ylabel('Accuracy')
36
+ plt.legend()
37
+ plt.title('Top-5 Accuracy')
38
+
39
+ plt.subplot(2, 2, 3)
40
+ plt.plot(epochs, train_losses, label='Train Loss')
41
+ plt.plot(epochs, test_losses, label='Test Loss')
42
+ plt.xlabel('Epoch')
43
+ plt.ylabel('Loss')
44
+ plt.legend()
45
+ plt.title('Loss')
46
+
47
+ plt.subplot(2, 2, 4)
48
+ plt.plot(epochs, learning_rates, label='Learning Rate')
49
+ plt.xlabel('Epoch')
50
+ plt.ylabel('Learning Rate')
51
+ plt.legend()
52
+ plt.title('Learning Rate')
53
+
54
+ plt.tight_layout()
55
+ plt.show()
56
+
57
+ def plot_misclassified_samples(misclassified_images, misclassified_labels, misclassified_preds, classes):
58
+ if misclassified_images:
59
+ print("\nDisplaying some misclassified samples:")
60
+ misclassified_grid = make_grid(misclassified_images[:16], nrow=4, normalize=True, scale_each=True)
61
+ plt.figure(figsize=(8, 8))
62
+ plt.imshow(misclassified_grid.permute(1, 2, 0))
63
+ plt.title("Misclassified Samples")
64
+ plt.axis('off')
65
+ plt.show()