File size: 18,465 Bytes
527298b
 
62b85f6
 
 
 
 
 
527298b
62b85f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
---
license: apache-2.0
language:
- zh
library_name: transformers
pipeline_tag: text-generation
inference: false
quantized_by: audreyt
---
# Breeze-7B-Instruct-64k-v0.1-GGUF

- Model creator: [MediaTek Research](https://huggingface.co/MediaTek-Research)
- Original model: [Breeze-7B-Instruct-64k-v0.1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0.1)

## Description

This repo contains GGUF format model files for MediaTek Research's [Breeze-7B-Instruct-64k-v0.1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0.1).

<!-- README_GGUF.md-about-gguf start -->
### About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

Here is an incomplete list of clients and libraries that are known to support GGUF:

* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.

<!-- README_GGUF.md-about-gguf end -->

# Original model card

Breeze-7B is a language model family that builds on top of [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1), specifically intended for Traditional Chinese use.

[Breeze-7B-Base](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0.1) is the base model for the Breeze-7B series. 
It is suitable for use if you have substantial fine-tuning data to tune it for your specific use case.

[Breeze-7B-Instruct](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0.1) derives from the base model Breeze-7B-Base, making the resulting model amenable to be used as-is for commonly seen tasks.

[Breeze-7B-Instruct-64k](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0.1) is a slightly modified version of 
Breeze-7B-Instruct to enable a 64k-token context length. Roughly speaking, that is equivalent to 88k Traditional Chinese characters.

The current release version of Breeze-7B is v0.1.

Practicality-wise:
- Breeze-7B-Base expands the original vocabulary with additional 30,000 Traditional Chinese tokens. With the expanded vocabulary, everything else being equal, Breeze-7B operates at twice the inference speed for Traditional Chinese to Mistral-7B and Llama 7B. [See [Inference Performance](#inference-performance).]
- Breeze-7B-Instruct can be used as is for common tasks such as Q&A, RAG, multi-round chat, and summarization.
- In particular, Breeze-7B-Instruct-64k can perform tasks at a document level, not a chapter level.

Performance-wise:
- Breeze-7B-Instruct demonstrates impressive performance in benchmarks for Traditional Chinese, when compared to similar sized open-source contemporaries such as Taiwan-LLM-7B/13B-chat, QWen-7B-Chat, and Yi-6B-Chat. [See [Chat Model Performance](#chat-model-performance).]
- Breeze-7B-Instruct shows comparable results to Mistral-7B-Instruct-v0.1 on the MMLU and MT-Bench benchmarks. [See [Chat Model Performance](#chat-model-performance).]


*A project by the members (in alphabetical order): Chan-Jan Hsu 許湛然, Chang-Le Liu 劉昶樂, Feng-Ting Liao 廖峰挺, Po-Chun Hsu 許博竣, Yi-Chang Chen 陳宜昌, and the supervisor Da-Shan Shiu 許大山.*

## Features

- Breeze-7B-Base-v0.1
  - Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
  - 8k-token context length
- Breeze-7B-Instruct-v0.1
  - Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese 
  - 8k-token context length
  - Multi-turn dialogue (without special handling for harmfulness)
- Breeze-7B-Instruct-64k-v0.1
  - Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
  - 64k-token context length
  - Multi-turn dialogue (without special handling for harmfulness)

## Model Details

- Breeze-7B-Base-v0.1
  - Finetuned from: [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
  - Model type: Causal decoder-only transformer language model
  - Language: English and Traditional Chinese (zh-tw)
- Breeze-7B-Instruct-v0.1
  - Finetuned from: [MediaTek-Research/Breeze-7B-Base-v0.1](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0.1)
  - Model type: Causal decoder-only transformer language model
  - Language: English and Traditional Chinese (zh-tw)
- Breeze-7B-Instruct-64k-v0.1
  - Finetuned from: [MediaTek-Research/Breeze-7B-Instruct-v0.1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0.1)
  - Model type: Causal decoder-only transformer language model
  - Language: English and Traditional Chinese (zh-tw)

## Base Model Performance

**TMMLU+**, **DRCD**, and **Table** source from [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2).
[MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2) derives from [TCEval-v1](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval)
 and [ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus). **MMLU** sources from [hails/mmlu_no_train](https://huggingface.co/datasets/hails/mmlu_no_train).
 We use the code revised from [EleutherAI/lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate **TMMLU+**, **DRCD**, **Table**, and **MMLU**. 


| Models                                       |        |↑ TMMLU+ (ACC) | DRCD (EM)   | Table (ACC) | MMLU (ACC) |
|----------------------------------------------|--------|--------------|-------------|-------------|------------|
|                                              |        |TC, Knowledge |TC, Reasoning|TC, Reasoning|EN, Knowledge|
|                                              |        | 5 shot       | 3 shot      | 5 shot      | 5 shot     |
| [Yi-34B](https://huggingface.co/01-ai/Yi-34B)| 34B    | 63.10        | 84.57       | 49.31  | 77.42      |
| [Qwen-14B](https://huggingface.co/01-ai/Qwen/Qwen-14B)| 14B    | 51.30        | 16.95 *     | 50.69  | 68.83      |
| [Yi-6B](https://huggingface.co/01-ai/Yi-6B) | 6B     | 49.63        | 76.61       | 34.72  | 65.35      |
| [Qwen-7B](https://huggingface.co/01-ai/Qwen/Qwen-7B)| 7B     | 42.84        | 0.0 *       | 39.58  | 61.00      |
| [**Breeze-7B-Base-v0.1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0.1)       | 7B     | 40.35        | 81.13        | 28.47  | 61.63      |
| [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)| 7B     | 36.93        | 79.27        | 27.78 | 64.89      |


\* Few-shot learning cannot effectively guide the model to generate the proper answer.


## Chat Model Performance

**TMMLU+**, **DRCD**, **Table**, and **MT-Bench-tw** source from [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2).
[MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2) derives from [TCEval-v1](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval)
 and [ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus). **MMLU** sources from [hails/mmlu_no_train](https://huggingface.co/datasets/hails/mmlu_no_train).
 **MT-Bench** source from [lmsys/mt_bench_human_judgments](https://huggingface.co/datasets/lmsys/mt_bench_human_judgments).
 We use the code revised from [EleutherAI/lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate **TMMLU+**, **DRCD**, **Table**, and **MMLU**. 
 We use the code revised from [fastchat llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) (GPT4 as judge) to evaluate **MT-Bench-tw** and **MT-Bench**.


| Models                                                                                                  |        |↑ MT-Bench-tw (Score)| TMMLU+ (ACC) | TMMLU+ (ACC) | DRCD (EM)   | Table (ACC) | MT-Bench (Score) | MMLU (ACC)  | MMLU (ACC)  | 
|---------------------------------------------------------------------------------------------------------|--------|--------------------|--------------|--------------|-------------|-------------|------------------|-------------|-------------|
|                                                                                                         |        |TC, Chat            |TC, Knowledge |TC, Knowledge |TC, Reasoning|TC, Reasoning|EN, Chat          |EN, Knowledge|EN, Knowledge|
|                                                                                                         |        |0 shot              | 0 shot       | 5 shot       | 3 shot      | 0 shot      |0 shot            |  0 shot     | 5 shot      | 
| [gpt-3.5-turbo](https://openai.com)                                                                     |        |7.1                 | 41.76        |              |             |             |7.9               |  70.00      |             |    
| [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat)                                                 | 34B    |6.9                 | 54.87        |              |             | 36.81       |7.6               |   71.04     |             |    
| [Qwen-14B-Chat](https://huggingface.co/Qwen/Qwen-14B-Chat)                                              | 14B    |6.4                 | 48.41        |              |             | 41.67       |7.2               |    64.91    |             |    
| [**Breeze-7B-Instruct-v0.1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0.1)         | 7B     |5.7                 | 41.61        |              |             | 45.83       |7.1               |    63.26    |             |    
| [**Breeze-7B-Instruct-64k-v0.1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0.1) | 7B     |5.5                 | 40.99        |              |             | 36.11       |7.1               |    63.68    |             |    
| [Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat)                                                | 7B     |5.4                 | 40.02        |              |             | 33.33       |6.2               |    55.94    |             |    
| [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)                                                   | 6B     |5.0                 | 44.79        |              |             | 25.69       |6.0               |    59.45    |             |    
| [Taiwan-LLM-13B-v2.0-chat](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-chat)                  | 13B    |5.0                 | 29.47        |              |             | 23.61       |-*                |    50.50    |             |     
| [Taiwan-LLM-7B-v2.1-chat](https://huggingface.co/yentinglin/Taiwan-LLM-7B-v2.1-chat)                    | 7B     |4.2                 | 28.08        |              |             | 31.25       | -*               |    42.72    |             |    

\* Taiwan-LLM models responds to multi-turn questions (English) in Traditional Chinese.

**Category Score of MT-Bench-tw (0 shot)**

| Models                                              | STEM    |Extraction|Reasoning| Math   | Coding  | Roleplay| Writing |Humanities|↑ AVG   |
|-----------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| gpt-3.5-turbo                                       |  7.8    |  6.1    |   5.1   |   6.4   |  6.2    |   8.7   |   7.4   |   9.3   |   7.1   |
| Yi-34B-Chat                                         |  9.0    |  4.8    |   5.7   |   4.0   |  4.7    |   8.5   |   8.7   |   9.8   |   6.9   |
| Qwen-14B-Chat                                       |  7.6    |  5.7    |   4.5   |   4.2   |  5.3    |   7.5   |   7.3   |   9.1   |   6.4   |
| **Breeze-7B-Instruct-v0.1**                         |  6.5    |  5.6    |   3.9   |   3.6   |  4.3    |   6.9   |   5.7   |   9.3   |   5.7   |
| **Breeze-7B-Instruct-64k-v0.1**                     |  6.1    |  5.3    |   3.7   |   2.9   |  4.2    |   7.0   |   6.7   |   8.3   |   5.5   |
| Qwen-7B-Chat                                        |  6.6    |  4.5    |   4.8   |   2.9   |  3.6    |   6.2   |   6.8   |   8.2   |   5.4   |
| Yi-6B-Chat                                          |  7.3    |  2.7    |   3.1   |   3.3   |  2.3    |   7.2   |   5.2   |   8.8   |   5.0   |
| Taiwan-LLM-13B-v2.0-chat                            |  6.1    |  3.4    |   4.1   |   2.3   |  3.1    |   7.4   |   6.6   |   6.8   |   5.0   |
| Taiwan-LLM-7B-v2.1-chat                             |  5.2    |  2.6    |   2.3   |   1.2   |  3.4    |   6.6   |   5.7   |   6.8   |   4.2   |

**Category ACC of TMMLU+ (0 shot)**   

| Model                                               | STEM         | Social Science | Humanities | Other      | ↑ AVG   |
|-----------------------------------------------------|--------------|----------------|------------|------------|---------|
| Yi-34B-Chat                                         | 47.65        | 64.25          | 52.73      | 54.91      | 54.87   |
| Qwen-14B-Chat                                       | 43.83        | 55.00          | 48.55      | 46.22      | 48.41   |
| Yi-6B-Chat                                          | 37.80        | 51.74          | 45.36      | 44.25      | 44.79   |
| gpt-3.5-turbo                                       | 41.56        | 46.72          | 36.73      | 42.03      | 41.76   |
| **Breeze-7B-Instruct-v0.1**                         | 37.41        | 46.81          | 42.06      | 40.16      | 41.61   |
| **Breeze-7B-Instruct-64k-v0.1**                     | 37.88        | 46.35          | 40.31      | 39.40      | 40.99   |
| Qwen-7B-Chat                                        | 35.44        | 46.22          | 38.35      | 40.06      | 40.02   |
| Taiwan-LLM-13B-v2.0-chat                            | 27.74        | 33.69          | 27.03      | 29.43      | 29.47   |
| Taiwan-LLM-7B-v2.1-chat                             | 25.58        | 31.76          | 27.36      | 27.61      | 28.08   |



## Inference Performance
In this test, we use the first 700 characters of the [web article](https://health.udn.com/health/story/5976/7699252?from=udn_ch1005_main_index) as the input and ask the model to write the same article again.
All inferences run on 2 RTX A6000 GPUs (using `vllm`, with a tensor-parallel size of 2).

| Models                                                             | ↓ Inference Time (sec)|Estimated Max Input Length (Char)|
|--------------------------------------------------------------------|-------------------|--------------------------|
| Yi-6B                                                              |   10.62  |   5.2k                |
| **Breeze-7B-Instruct-v0.1**                                        |  10.74  |    11.1k                 |
| **Breeze-7B-Instruct-64k-v0.1**                                    | 10.74       |  88.8k            |
| Qwen-7B                                                            |   10.86         |    9.8k                  |
| Qwen-14B                                                           |   18.89  |    9.8k                  |
| Mistral-7B-v0.1                                                    |  20.48   |    5.1k                 |
| Taiwan-LLM-7B-v2.1-base                                            |   26.26          |    2.2k                  |
| Taiwan-LLM-13B-v2.0-base                                           |   36.80          |    2.2k                  |
| Yi-34B                                                             |  43.71   |    4.5k                  |

## Long-context Performance

TBD

## Examples

TBD

## Use in Transformers

First install direct dependencies:
```
pip install transformers torch accelerate
```
If you want faster inference using flash-attention2, you need to install these dependencies:
```bash
pip install packaging ninja
pip install flash-attn
```
Then load the model in transformers:
```python
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("MediaTek-Research/Breeze-7B-Instruct-v0.1")
tokenizer = AutoTokenizer.from_pretrained("MediaTek-Research/Breeze-7B-Instruct-v0.1")

# you can also using pipeline
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
generator(
    "請問台灣最高的山是",
    max_length=30,
    num_return_sequences=1,
)

```

The structure of the query template follows that of Mistral-7B-Instruct, as shown below.
```txt
<s> SYS_PROMPT   [INST] QUERY1 [/INST] RESPONSE1 [INST] QUERY2 [/INST]
```
where `SYS_PROMPT`, `QUERY1`, `RESPONSE1`, and `QUERY2` can be provided by the user.

The suggested default `SYS_PROMPT` is 
```txt
You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan.
```

## Citation

```
@article{breeze7b2024,
  title={},
  author={},
  journal={arXiv},
  year={2024}
}
```