File size: 5,031 Bytes
e38840c
66a349d
 
c8e5a45
 
66a349d
 
 
 
 
c8e5a45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e38840c
66a349d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8e5a45
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
language:
- en
license: other
library_name: transformers
tags:
- pytorch
- llama
- llama-2
- qCammel-70
pipeline_tag: text-generation
inference: false
model-index:
- name: qCammel-70
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 68.34
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=augtoma/qCammel-70
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 87.87
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=augtoma/qCammel-70
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 70.18
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=augtoma/qCammel-70
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 57.47
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=augtoma/qCammel-70
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 84.29
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=augtoma/qCammel-70
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 29.72
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=augtoma/qCammel-70
      name: Open LLM Leaderboard
---
# qCammel-70
qCammel-70 is a fine-tuned version of Llama-2 70B model, trained on a distilled dataset of 15,000 instructions using QLoRA. This model is optimized for academic medical knowledge and instruction-following capabilities.

## Model Details
*Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept their License before downloading this model .*

The fine-tuning process applied to qCammel-70 involves a distilled dataset of 15,000 instructions and is trained with QLoRA, 


**Variations** The original Llama 2 has parameter sizes of 7B, 13B, and 70B. This is the fine-tuned version of the 70B model.

**Input** Models input text only.

**Output** Models generate text only.

**Model Architecture** qCammel-70 is based on the Llama 2 architecture, an auto-regressive language model that uses a decoder only transformer architecture.

**License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved

**Research Papers** 
- [Clinical Camel: An Open-Source Expert-Level Medical Language Model with Dialogue-Based Knowledge Encoding](https://arxiv.org/abs/2305.12031)
- [QLoRA: Efficient Finetuning of Quantized LLMs](https://arxiv.org/abs/2305.14314)
- [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.70971)


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_augtoma__qCammel-70)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |66.31|
|AI2 Reasoning Challenge (25-Shot)|68.34|
|HellaSwag (10-Shot)              |87.87|
|MMLU (5-Shot)                    |70.18|
|TruthfulQA (0-shot)              |57.47|
|Winogrande (5-shot)              |84.29|
|GSM8k (5-shot)                   |29.72|