--- language: - en license: other library_name: transformers tags: - pytorch - llama - llama-2 - qCammel-70 pipeline_tag: text-generation inference: false model-index: - name: qCammel-70 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.34 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=augtoma/qCammel-70 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.87 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=augtoma/qCammel-70 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 70.18 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=augtoma/qCammel-70 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 57.47 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=augtoma/qCammel-70 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.29 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=augtoma/qCammel-70 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 29.72 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=augtoma/qCammel-70 name: Open LLM Leaderboard --- # qCammel-70 qCammel-70 is a fine-tuned version of Llama-2 70B model, trained on a distilled dataset of 15,000 instructions using QLoRA. This model is optimized for academic medical knowledge and instruction-following capabilities. ## Model Details *Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept their License before downloading this model .* The fine-tuning process applied to qCammel-70 involves a distilled dataset of 15,000 instructions and is trained with QLoRA, **Variations** The original Llama 2 has parameter sizes of 7B, 13B, and 70B. This is the fine-tuned version of the 70B model. **Input** Models input text only. **Output** Models generate text only. **Model Architecture** qCammel-70 is based on the Llama 2 architecture, an auto-regressive language model that uses a decoder only transformer architecture. **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved **Research Papers** - [Clinical Camel: An Open-Source Expert-Level Medical Language Model with Dialogue-Based Knowledge Encoding](https://arxiv.org/abs/2305.12031) - [QLoRA: Efficient Finetuning of Quantized LLMs](https://arxiv.org/abs/2305.14314) - [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.70971) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_augtoma__qCammel-70) | Metric |Value| |---------------------------------|----:| |Avg. |66.31| |AI2 Reasoning Challenge (25-Shot)|68.34| |HellaSwag (10-Shot) |87.87| |MMLU (5-Shot) |70.18| |TruthfulQA (0-shot) |57.47| |Winogrande (5-shot) |84.29| |GSM8k (5-shot) |29.72|