--- license: mit base_model: nvidia/mit-b1 tags: - generated_from_keras_callback model-index: - name: slm-segformer-080823-b1 results: [] --- # slm-segformer-080823-b1 This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on patches from [sketched boundaries](https://www.kaggle.com/datasets/aurioldegbelo/slm-boundaries) during the SmartLandMaps project. It achieves the following results on the evaluation set: - Train Loss: 0.0257 - Validation Loss: 0.0271 - Validation Mean Iou: 0.8583 - Validation Mean Accuracy: 0.9196 - Validation Overall Accuracy: 0.9888 - Validation Per Category Iou: [0.98849374 0.72800628] - Validation Per Category Accuracy: [0.99410982 0.84499592] - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 6e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Per Category Iou | Validation Per Category Accuracy | Epoch | |:----------:|:---------------:|:-------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------------:|:-----:| | 0.1099 | 0.0958 | 0.8134 | 0.9461 | 0.9824 | [0.98176563 0.64502586] | [0.98511039 0.90705184] | 0 | | 0.0478 | 0.0523 | 0.8440 | 0.9449 | 0.9865 | [0.9860406 0.7019479] | [0.98964683 0.90022015] | 1 | | 0.0379 | 0.0409 | 0.8476 | 0.9325 | 0.9873 | [0.98687303 0.70826431] | [0.99144882 0.87350047] | 2 | | 0.0336 | 0.0331 | 0.8551 | 0.9394 | 0.9880 | [0.98757544 0.72269531] | [0.99166337 0.88706795] | 3 | | 0.0310 | 0.0329 | 0.8541 | 0.9426 | 0.9878 | [0.98735586 0.72081351] | [0.99118853 0.89409615] | 4 | | 0.0292 | 0.0317 | 0.8516 | 0.9348 | 0.9877 | [0.98729336 0.71599644] | [0.99171219 0.87789181] | 5 | | 0.0282 | 0.0296 | 0.8572 | 0.9336 | 0.9884 | [0.98798391 0.72647977] | [0.99252058 0.87472321] | 6 | | 0.0271 | 0.0319 | 0.8476 | 0.9253 | 0.9875 | [0.98709267 0.70802268] | [0.99221744 0.85835533] | 7 | | 0.0267 | 0.0295 | 0.8549 | 0.9298 | 0.9882 | [0.98782022 0.72192985] | [0.9926388 0.86691624] | 8 | | 0.0257 | 0.0271 | 0.8583 | 0.9196 | 0.9888 | [0.98849374 0.72800628] | [0.99410982 0.84499592] | 9 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Tokenizers 0.13.3