# Llama-2-13b SuperCOT lora checkpoints These are my Llama-2-13b SuperCOT Lora checkpoints trained using QLora on the [SuperCOT Dataset](https://huggingface.co/datasets/kaiokendev/SuperCOT-dataset). ### Architecture - **Model Architecture**: Llama-2-13b - **Training Algorithm**: QLora ### Training Details - **Dataset**: [SuperCOT Dataset](https://huggingface.co/datasets/kaiokendev/SuperCOT-dataset) - **Datset type**: alpaca - **Training Parameters**: [See Here](https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/examples/llama-2/qlora.yml) - **Training Environment**: Axolotl - **sequence_len**: 4096 ## Acknowledgments Special thanks to the creators of the datasets in SuperCOT. Additionally, thanks to Kaiokendev for curating the SuperCOT dataset. Thanks to the contributors of the Axolotl. ## Stuff generated from axolotl: --- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0