--- library_name: peft base_model: jhflow/mistral7b-lora-multi-turn-v2 tags: - axolotl - generated_from_trainer model-index: - name: 30814711-ccc0-4f29-80d4-369906159ad1 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: jhflow/mistral7b-lora-multi-turn-v2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e59bf08a82c586dc_train_data.json ds_type: json format: custom path: /workspace/input_data/e59bf08a82c586dc_train_data.json type: field_instruction: ja field_output: en format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' ddp_timeout: 1800 debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 150 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true group_by_length: true hub_model_id: auxyus/30814711-ccc0-4f29-80d4-369906159ad1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 10 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: constant max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 1800 micro_batch_size: 4 mlflow_experiment_name: /tmp/e59bf08a82c586dc_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optim_args: adam_beta1: 0.9 adam_beta2: 0.999 adam_epsilon: 1e-08 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true relora_prune_ratio: 0.9 resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 saves_per_epoch: null sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: acopia-grant wandb_mode: online wandb_name: 495a38a9-bfac-4582-90e8-fd041e7f79aa wandb_project: Gradients-On-191 wandb_run: your_name wandb_runid: 495a38a9-bfac-4582-90e8-fd041e7f79aa warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# 30814711-ccc0-4f29-80d4-369906159ad1 This model is a fine-tuned version of [jhflow/mistral7b-lora-multi-turn-v2](https://huggingface.co/jhflow/mistral7b-lora-multi-turn-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 50 - training_steps: 1800 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 1.6940 | | 2.6514 | 0.0171 | 150 | 0.7872 | | 2.9006 | 0.0342 | 300 | 0.7782 | | 2.7841 | 0.0513 | 450 | 0.7688 | | 2.3435 | 0.0684 | 600 | 0.7487 | | 2.7235 | 0.0855 | 750 | 0.7589 | | 2.9982 | 0.1026 | 900 | 0.7434 | | 3.2438 | 0.1197 | 1050 | 0.7436 | | 2.6104 | 0.1368 | 1200 | 0.7241 | | 2.6013 | 0.1539 | 1350 | 0.7200 | | 2.6117 | 0.1710 | 1500 | 0.7165 | | 2.8639 | 0.1881 | 1650 | 0.7183 | | 3.201 | 0.2052 | 1800 | 0.7226 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1