avemio-digital commited on
Commit
924aae5
verified
1 Parent(s): 2f2b801

Upload 15 files

Browse files
.gitattributes CHANGED
@@ -1,35 +1,35 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "avemio-digital/Mistral-Nemo-SFT-after-CPT-with-2-epochs-adjusted-config",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 5120,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 14336,
14
+ "max_position_embeddings": 1024000,
15
+ "model_type": "mistral",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 40,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.43.4",
25
+ "use_cache": true,
26
+ "vocab_size": 131136
27
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.43.4"
6
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step720
model-00001-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3296d415d0e2b2754257d87da185d9dff731987029b31ce0307774c8bafb246a
3
+ size 4866177856
model-00002-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:348b74901e4d5c51bb4005101f4950105c55434fda2bdc1eeae8c4b9272fad14
3
+ size 4907529424
model-00003-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18e07e57f24c193cb5c56fbbd6545b4a5925fecd6ebbf96bd8ee9e29204d8021
3
+ size 4907529456
model-00004-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6eb30db4d77024f9fd5a362d39c98f7c58ac306b0c92b28b7505df3b7660de2
3
+ size 4907529456
model-00005-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d70438639b120ae15dee5c1fb673b2d00a791e465500a316fc41831a55b2661
3
+ size 4908151632
model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 24496875520
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00005-of-00005.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00005.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00005.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00005.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00005.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00005.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00005.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00005.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00005.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00005.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00005.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00005.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00005.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00005.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00005.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00005.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00005.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00005.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00005.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00005-of-00005.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00005-of-00005.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00005.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
368
+ "model.norm.weight": "model-00005-of-00005.safetensors"
369
+ }
370
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|im_start|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "<|im_end|>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ }
17
+ ],
18
+ "bos_token": {
19
+ "content": "<s>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "eos_token": {
26
+ "content": "</s>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ },
32
+ "pad_token": {
33
+ "content": "</s>",
34
+ "lstrip": false,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ },
39
+ "unk_token": {
40
+ "content": "<unk>",
41
+ "lstrip": false,
42
+ "normalized": false,
43
+ "rstrip": false,
44
+ "single_word": false
45
+ }
46
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,504 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 20.425531914893618,
5
+ "eval_steps": 300,
6
+ "global_step": 720,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.9078014184397163,
13
+ "grad_norm": 132.1505126953125,
14
+ "learning_rate": 2.222222222222222e-07,
15
+ "log_odds_chosen": 0.05492939054965973,
16
+ "log_odds_ratio": -0.7323614954948425,
17
+ "logits/chosen": -4.740067958831787,
18
+ "logits/rejected": -4.963461399078369,
19
+ "logps/chosen": -2.374514579772949,
20
+ "logps/rejected": -2.4533467292785645,
21
+ "loss": 2.8785,
22
+ "nll_loss": 2.7699854373931885,
23
+ "rewards/accuracies": 0.48828125,
24
+ "rewards/chosen": -0.3561772108078003,
25
+ "rewards/margins": 0.011824802495539188,
26
+ "rewards/rejected": -0.3680019676685333,
27
+ "step": 32
28
+ },
29
+ {
30
+ "epoch": 1.8156028368794326,
31
+ "grad_norm": 45.387813568115234,
32
+ "learning_rate": 4.444444444444444e-07,
33
+ "log_odds_chosen": 0.22124934196472168,
34
+ "log_odds_ratio": -0.6725601553916931,
35
+ "logits/chosen": -5.0936760902404785,
36
+ "logits/rejected": -5.33966588973999,
37
+ "logps/chosen": -1.732269287109375,
38
+ "logps/rejected": -1.9329001903533936,
39
+ "loss": 2.2151,
40
+ "nll_loss": 2.172783851623535,
41
+ "rewards/accuracies": 0.6015625,
42
+ "rewards/chosen": -0.2598403990268707,
43
+ "rewards/margins": 0.030094601213932037,
44
+ "rewards/rejected": -0.28993502259254456,
45
+ "step": 64
46
+ },
47
+ {
48
+ "epoch": 2.723404255319149,
49
+ "grad_norm": 19.709226608276367,
50
+ "learning_rate": 4.983095894354857e-07,
51
+ "log_odds_chosen": 0.2306685447692871,
52
+ "log_odds_ratio": -0.658535361289978,
53
+ "logits/chosen": -4.936949729919434,
54
+ "logits/rejected": -5.155893802642822,
55
+ "logps/chosen": -1.4097586870193481,
56
+ "logps/rejected": -1.5965328216552734,
57
+ "loss": 1.8908,
58
+ "nll_loss": 1.8126921653747559,
59
+ "rewards/accuracies": 0.6171875,
60
+ "rewards/chosen": -0.2114638090133667,
61
+ "rewards/margins": 0.028016118332743645,
62
+ "rewards/rejected": -0.2394799143075943,
63
+ "step": 96
64
+ },
65
+ {
66
+ "epoch": 3.631205673758865,
67
+ "grad_norm": 20.5742130279541,
68
+ "learning_rate": 4.908427196539701e-07,
69
+ "log_odds_chosen": 0.3416966497898102,
70
+ "log_odds_ratio": -0.5978461503982544,
71
+ "logits/chosen": -4.871417999267578,
72
+ "logits/rejected": -5.006246566772461,
73
+ "logps/chosen": -1.3338335752487183,
74
+ "logps/rejected": -1.595802903175354,
75
+ "loss": 1.7492,
76
+ "nll_loss": 1.6234831809997559,
77
+ "rewards/accuracies": 0.66015625,
78
+ "rewards/chosen": -0.20007506012916565,
79
+ "rewards/margins": 0.039295390248298645,
80
+ "rewards/rejected": -0.2393704503774643,
81
+ "step": 128
82
+ },
83
+ {
84
+ "epoch": 4.539007092198582,
85
+ "grad_norm": 19.219451904296875,
86
+ "learning_rate": 4.775907352415367e-07,
87
+ "log_odds_chosen": 0.4098852872848511,
88
+ "log_odds_ratio": -0.5668885111808777,
89
+ "logits/chosen": -4.7395429611206055,
90
+ "logits/rejected": -4.919832229614258,
91
+ "logps/chosen": -1.251634955406189,
92
+ "logps/rejected": -1.5617362260818481,
93
+ "loss": 1.6591,
94
+ "nll_loss": 1.5759321451187134,
95
+ "rewards/accuracies": 0.72265625,
96
+ "rewards/chosen": -0.18774525821208954,
97
+ "rewards/margins": 0.04651518166065216,
98
+ "rewards/rejected": -0.2342604398727417,
99
+ "step": 160
100
+ },
101
+ {
102
+ "epoch": 5.446808510638298,
103
+ "grad_norm": 25.844369888305664,
104
+ "learning_rate": 4.588719528532341e-07,
105
+ "log_odds_chosen": 0.4376165568828583,
106
+ "log_odds_ratio": -0.5644897222518921,
107
+ "logits/chosen": -4.674585342407227,
108
+ "logits/rejected": -4.810555934906006,
109
+ "logps/chosen": -1.2456402778625488,
110
+ "logps/rejected": -1.5732855796813965,
111
+ "loss": 1.5996,
112
+ "nll_loss": 1.4974051713943481,
113
+ "rewards/accuracies": 0.73828125,
114
+ "rewards/chosen": -0.1868460476398468,
115
+ "rewards/margins": 0.04914678633213043,
116
+ "rewards/rejected": -0.23599283397197723,
117
+ "step": 192
118
+ },
119
+ {
120
+ "epoch": 6.3546099290780145,
121
+ "grad_norm": 23.09563636779785,
122
+ "learning_rate": 4.3513600327725117e-07,
123
+ "log_odds_chosen": 0.3738464415073395,
124
+ "log_odds_ratio": -0.5867234468460083,
125
+ "logits/chosen": -4.663087844848633,
126
+ "logits/rejected": -4.844013214111328,
127
+ "logps/chosen": -1.3138737678527832,
128
+ "logps/rejected": -1.5835403203964233,
129
+ "loss": 1.5411,
130
+ "nll_loss": 1.4685286283493042,
131
+ "rewards/accuracies": 0.7109375,
132
+ "rewards/chosen": -0.197081059217453,
133
+ "rewards/margins": 0.04045000299811363,
134
+ "rewards/rejected": -0.23753106594085693,
135
+ "step": 224
136
+ },
137
+ {
138
+ "epoch": 7.26241134751773,
139
+ "grad_norm": 23.646638870239258,
140
+ "learning_rate": 4.0695303116802467e-07,
141
+ "log_odds_chosen": 0.46367794275283813,
142
+ "log_odds_ratio": -0.547984778881073,
143
+ "logits/chosen": -4.620482921600342,
144
+ "logits/rejected": -4.765042781829834,
145
+ "logps/chosen": -1.307213544845581,
146
+ "logps/rejected": -1.65544593334198,
147
+ "loss": 1.498,
148
+ "nll_loss": 1.4461973905563354,
149
+ "rewards/accuracies": 0.75390625,
150
+ "rewards/chosen": -0.19608205556869507,
151
+ "rewards/margins": 0.05223485454916954,
152
+ "rewards/rejected": -0.2483169138431549,
153
+ "step": 256
154
+ },
155
+ {
156
+ "epoch": 8.170212765957446,
157
+ "grad_norm": 23.585857391357422,
158
+ "learning_rate": 3.75e-07,
159
+ "log_odds_chosen": 0.4542897343635559,
160
+ "log_odds_ratio": -0.5773134827613831,
161
+ "logits/chosen": -4.633105278015137,
162
+ "logits/rejected": -4.810471057891846,
163
+ "logps/chosen": -1.3886733055114746,
164
+ "logps/rejected": -1.7219102382659912,
165
+ "loss": 1.4686,
166
+ "nll_loss": 1.3969916105270386,
167
+ "rewards/accuracies": 0.7734375,
168
+ "rewards/chosen": -0.20830100774765015,
169
+ "rewards/margins": 0.049985550343990326,
170
+ "rewards/rejected": -0.2582865357398987,
171
+ "step": 288
172
+ },
173
+ {
174
+ "epoch": 8.51063829787234,
175
+ "eval_log_odds_chosen": 1.6898525953292847,
176
+ "eval_log_odds_ratio": -0.19230316579341888,
177
+ "eval_logits/chosen": -4.930749416351318,
178
+ "eval_logits/rejected": -4.758046627044678,
179
+ "eval_logps/chosen": -1.4714246988296509,
180
+ "eval_logps/rejected": -2.9621574878692627,
181
+ "eval_loss": 1.3246647119522095,
182
+ "eval_nll_loss": 1.4632530212402344,
183
+ "eval_rewards/accuracies": 1.0,
184
+ "eval_rewards/chosen": -0.22071371972560883,
185
+ "eval_rewards/margins": 0.22360996901988983,
186
+ "eval_rewards/rejected": -0.44432368874549866,
187
+ "eval_runtime": 0.6144,
188
+ "eval_samples_per_second": 222.965,
189
+ "eval_steps_per_second": 4.882,
190
+ "step": 300
191
+ },
192
+ {
193
+ "epoch": 9.078014184397164,
194
+ "grad_norm": 20.154146194458008,
195
+ "learning_rate": 3.400444312011776e-07,
196
+ "log_odds_chosen": 0.409349262714386,
197
+ "log_odds_ratio": -0.5844379663467407,
198
+ "logits/chosen": -4.599703311920166,
199
+ "logits/rejected": -4.766429901123047,
200
+ "logps/chosen": -1.3831363916397095,
201
+ "logps/rejected": -1.6733564138412476,
202
+ "loss": 1.4397,
203
+ "nll_loss": 1.4065345525741577,
204
+ "rewards/accuracies": 0.74609375,
205
+ "rewards/chosen": -0.20747046172618866,
206
+ "rewards/margins": 0.04353303089737892,
207
+ "rewards/rejected": -0.2510034739971161,
208
+ "step": 320
209
+ },
210
+ {
211
+ "epoch": 9.98581560283688,
212
+ "grad_norm": 23.09050750732422,
213
+ "learning_rate": 3.029259680573527e-07,
214
+ "log_odds_chosen": 0.43665847182273865,
215
+ "log_odds_ratio": -0.5905143618583679,
216
+ "logits/chosen": -4.58922815322876,
217
+ "logits/rejected": -4.685288906097412,
218
+ "logps/chosen": -1.458475112915039,
219
+ "logps/rejected": -1.7894960641860962,
220
+ "loss": 1.4285,
221
+ "nll_loss": 1.3732693195343018,
222
+ "rewards/accuracies": 0.73046875,
223
+ "rewards/chosen": -0.21877126395702362,
224
+ "rewards/margins": 0.04965316504240036,
225
+ "rewards/rejected": -0.26842445135116577,
226
+ "step": 352
227
+ },
228
+ {
229
+ "epoch": 10.893617021276595,
230
+ "grad_norm": 35.926055908203125,
231
+ "learning_rate": 2.6453620722761895e-07,
232
+ "log_odds_chosen": 0.6511461138725281,
233
+ "log_odds_ratio": -0.49195483326911926,
234
+ "logits/chosen": -4.608173370361328,
235
+ "logits/rejected": -4.685794830322266,
236
+ "logps/chosen": -1.3694053888320923,
237
+ "logps/rejected": -1.8711962699890137,
238
+ "loss": 1.4144,
239
+ "nll_loss": 1.374709129333496,
240
+ "rewards/accuracies": 0.8359375,
241
+ "rewards/chosen": -0.20541077852249146,
242
+ "rewards/margins": 0.07526866346597672,
243
+ "rewards/rejected": -0.28067946434020996,
244
+ "step": 384
245
+ },
246
+ {
247
+ "epoch": 11.801418439716311,
248
+ "grad_norm": 33.8105583190918,
249
+ "learning_rate": 2.2579728232420523e-07,
250
+ "log_odds_chosen": 0.5499828457832336,
251
+ "log_odds_ratio": -0.5233615040779114,
252
+ "logits/chosen": -4.537787437438965,
253
+ "logits/rejected": -4.662774085998535,
254
+ "logps/chosen": -1.3898181915283203,
255
+ "logps/rejected": -1.7920804023742676,
256
+ "loss": 1.4016,
257
+ "nll_loss": 1.3631547689437866,
258
+ "rewards/accuracies": 0.7890625,
259
+ "rewards/chosen": -0.20847272872924805,
260
+ "rewards/margins": 0.06033932417631149,
261
+ "rewards/rejected": -0.26881206035614014,
262
+ "step": 416
263
+ },
264
+ {
265
+ "epoch": 12.709219858156029,
266
+ "grad_norm": 25.557348251342773,
267
+ "learning_rate": 1.8763971398550467e-07,
268
+ "log_odds_chosen": 0.5377756357192993,
269
+ "log_odds_ratio": -0.5508320927619934,
270
+ "logits/chosen": -4.532352447509766,
271
+ "logits/rejected": -4.629130840301514,
272
+ "logps/chosen": -1.3977127075195312,
273
+ "logps/rejected": -1.7851612567901611,
274
+ "loss": 1.3943,
275
+ "nll_loss": 1.3304414749145508,
276
+ "rewards/accuracies": 0.77734375,
277
+ "rewards/chosen": -0.20965692400932312,
278
+ "rewards/margins": 0.05811727046966553,
279
+ "rewards/rejected": -0.26777422428131104,
280
+ "step": 448
281
+ },
282
+ {
283
+ "epoch": 13.617021276595745,
284
+ "grad_norm": 28.700815200805664,
285
+ "learning_rate": 1.5098005849021078e-07,
286
+ "log_odds_chosen": 0.5411101579666138,
287
+ "log_odds_ratio": -0.5445564985275269,
288
+ "logits/chosen": -4.501680850982666,
289
+ "logits/rejected": -4.677550315856934,
290
+ "logps/chosen": -1.3654242753982544,
291
+ "logps/rejected": -1.7541980743408203,
292
+ "loss": 1.401,
293
+ "nll_loss": 1.2766036987304688,
294
+ "rewards/accuracies": 0.8046875,
295
+ "rewards/chosen": -0.2048136293888092,
296
+ "rewards/margins": 0.05831605941057205,
297
+ "rewards/rejected": -0.26312971115112305,
298
+ "step": 480
299
+ },
300
+ {
301
+ "epoch": 14.52482269503546,
302
+ "grad_norm": 35.40031814575195,
303
+ "learning_rate": 1.1669889179957723e-07,
304
+ "log_odds_chosen": 0.7372524738311768,
305
+ "log_odds_ratio": -0.46363916993141174,
306
+ "logits/chosen": -4.513700485229492,
307
+ "logits/rejected": -4.619227886199951,
308
+ "logps/chosen": -1.3301138877868652,
309
+ "logps/rejected": -1.8859204053878784,
310
+ "loss": 1.3839,
311
+ "nll_loss": 1.219886302947998,
312
+ "rewards/accuracies": 0.87109375,
313
+ "rewards/chosen": -0.19951710104942322,
314
+ "rewards/margins": 0.08337096124887466,
315
+ "rewards/rejected": -0.2828880548477173,
316
+ "step": 512
317
+ },
318
+ {
319
+ "epoch": 15.432624113475176,
320
+ "grad_norm": 62.16829299926758,
321
+ "learning_rate": 8.561965785773412e-08,
322
+ "log_odds_chosen": 0.661382794380188,
323
+ "log_odds_ratio": -0.4891131520271301,
324
+ "logits/chosen": -4.506048202514648,
325
+ "logits/rejected": -4.587852478027344,
326
+ "logps/chosen": -1.3864898681640625,
327
+ "logps/rejected": -1.8775601387023926,
328
+ "loss": 1.3876,
329
+ "nll_loss": 1.2974672317504883,
330
+ "rewards/accuracies": 0.8359375,
331
+ "rewards/chosen": -0.20797351002693176,
332
+ "rewards/margins": 0.07366053014993668,
333
+ "rewards/rejected": -0.28163403272628784,
334
+ "step": 544
335
+ },
336
+ {
337
+ "epoch": 16.340425531914892,
338
+ "grad_norm": 29.107358932495117,
339
+ "learning_rate": 5.848888922025552e-08,
340
+ "log_odds_chosen": 0.6269708275794983,
341
+ "log_odds_ratio": -0.49757176637649536,
342
+ "logits/chosen": -4.460994243621826,
343
+ "logits/rejected": -4.661521911621094,
344
+ "logps/chosen": -1.3339214324951172,
345
+ "logps/rejected": -1.7924858331680298,
346
+ "loss": 1.3923,
347
+ "nll_loss": 1.2958626747131348,
348
+ "rewards/accuracies": 0.8125,
349
+ "rewards/chosen": -0.200088232755661,
350
+ "rewards/margins": 0.06878463923931122,
351
+ "rewards/rejected": -0.26887285709381104,
352
+ "step": 576
353
+ },
354
+ {
355
+ "epoch": 17.02127659574468,
356
+ "eval_log_odds_chosen": 1.7557824850082397,
357
+ "eval_log_odds_ratio": -0.18494771420955658,
358
+ "eval_logits/chosen": -4.790639400482178,
359
+ "eval_logits/rejected": -4.577674865722656,
360
+ "eval_logps/chosen": -1.626247763633728,
361
+ "eval_logps/rejected": -3.2115631103515625,
362
+ "eval_loss": 1.2619013786315918,
363
+ "eval_nll_loss": 1.4078196287155151,
364
+ "eval_rewards/accuracies": 1.0,
365
+ "eval_rewards/chosen": -0.2439371794462204,
366
+ "eval_rewards/margins": 0.2377973347902298,
367
+ "eval_rewards/rejected": -0.4817345142364502,
368
+ "eval_runtime": 0.6115,
369
+ "eval_samples_per_second": 224.05,
370
+ "eval_steps_per_second": 4.906,
371
+ "step": 600
372
+ },
373
+ {
374
+ "epoch": 17.24822695035461,
375
+ "grad_norm": 29.23589515686035,
376
+ "learning_rate": 3.5958275117433404e-08,
377
+ "log_odds_chosen": 0.5763309001922607,
378
+ "log_odds_ratio": -0.5261004567146301,
379
+ "logits/chosen": -4.398637294769287,
380
+ "logits/rejected": -4.560643672943115,
381
+ "logps/chosen": -1.3885968923568726,
382
+ "logps/rejected": -1.8019691705703735,
383
+ "loss": 1.3886,
384
+ "nll_loss": 1.3023698329925537,
385
+ "rewards/accuracies": 0.8046875,
386
+ "rewards/chosen": -0.20828954875469208,
387
+ "rewards/margins": 0.06200582906603813,
388
+ "rewards/rejected": -0.2702953815460205,
389
+ "step": 608
390
+ },
391
+ {
392
+ "epoch": 18.156028368794328,
393
+ "grad_norm": 27.693330764770508,
394
+ "learning_rate": 1.8569007682777415e-08,
395
+ "log_odds_chosen": 0.7424343824386597,
396
+ "log_odds_ratio": -0.46295538544654846,
397
+ "logits/chosen": -4.579552173614502,
398
+ "logits/rejected": -4.691650390625,
399
+ "logps/chosen": -1.3507909774780273,
400
+ "logps/rejected": -1.9150110483169556,
401
+ "loss": 1.3865,
402
+ "nll_loss": 1.3111711740493774,
403
+ "rewards/accuracies": 0.84375,
404
+ "rewards/chosen": -0.20261868834495544,
405
+ "rewards/margins": 0.084633007645607,
406
+ "rewards/rejected": -0.28725165128707886,
407
+ "step": 640
408
+ },
409
+ {
410
+ "epoch": 19.06382978723404,
411
+ "grad_norm": 37.925621032714844,
412
+ "learning_rate": 6.738782355044048e-09,
413
+ "log_odds_chosen": 0.6857459545135498,
414
+ "log_odds_ratio": -0.4916977882385254,
415
+ "logits/chosen": -4.52652645111084,
416
+ "logits/rejected": -4.689857482910156,
417
+ "logps/chosen": -1.341786503791809,
418
+ "logps/rejected": -1.8565285205841064,
419
+ "loss": 1.3794,
420
+ "nll_loss": 1.2754034996032715,
421
+ "rewards/accuracies": 0.8046875,
422
+ "rewards/chosen": -0.20126797258853912,
423
+ "rewards/margins": 0.07721129059791565,
424
+ "rewards/rejected": -0.27847927808761597,
425
+ "step": 672
426
+ },
427
+ {
428
+ "epoch": 19.97163120567376,
429
+ "grad_norm": 24.041799545288086,
430
+ "learning_rate": 7.51764708051994e-10,
431
+ "log_odds_chosen": 0.6411248445510864,
432
+ "log_odds_ratio": -0.5100895762443542,
433
+ "logits/chosen": -4.384097099304199,
434
+ "logits/rejected": -4.515219688415527,
435
+ "logps/chosen": -1.3920109272003174,
436
+ "logps/rejected": -1.8711614608764648,
437
+ "loss": 1.3805,
438
+ "nll_loss": 1.2700397968292236,
439
+ "rewards/accuracies": 0.8203125,
440
+ "rewards/chosen": -0.20880162715911865,
441
+ "rewards/margins": 0.07187257707118988,
442
+ "rewards/rejected": -0.2806742191314697,
443
+ "step": 704
444
+ },
445
+ {
446
+ "epoch": 20.425531914893618,
447
+ "grad_norm": 28.226720809936523,
448
+ "learning_rate": 0.0,
449
+ "log_odds_chosen": 0.6200518608093262,
450
+ "log_odds_ratio": -0.529932975769043,
451
+ "logits/chosen": -4.434691905975342,
452
+ "logits/rejected": -4.575813293457031,
453
+ "logps/chosen": -1.416117548942566,
454
+ "logps/rejected": -1.8715832233428955,
455
+ "loss": 1.3893,
456
+ "nll_loss": 1.2817054986953735,
457
+ "rewards/accuracies": 0.78125,
458
+ "rewards/chosen": -0.2124176323413849,
459
+ "rewards/margins": 0.0683198943734169,
460
+ "rewards/rejected": -0.2807375192642212,
461
+ "step": 720
462
+ },
463
+ {
464
+ "epoch": 20.425531914893618,
465
+ "eval_log_odds_chosen": 1.7479673624038696,
466
+ "eval_log_odds_ratio": -0.1867920309305191,
467
+ "eval_logits/chosen": -4.75565767288208,
468
+ "eval_logits/rejected": -4.538194179534912,
469
+ "eval_logps/chosen": -1.6300764083862305,
470
+ "eval_logps/rejected": -3.2087719440460205,
471
+ "eval_loss": 1.2522811889648438,
472
+ "eval_nll_loss": 1.4028778076171875,
473
+ "eval_rewards/accuracies": 1.0,
474
+ "eval_rewards/chosen": -0.24451148509979248,
475
+ "eval_rewards/margins": 0.23680436611175537,
476
+ "eval_rewards/rejected": -0.48131585121154785,
477
+ "eval_runtime": 0.615,
478
+ "eval_samples_per_second": 222.778,
479
+ "eval_steps_per_second": 4.878,
480
+ "step": 720
481
+ }
482
+ ],
483
+ "logging_steps": 32,
484
+ "max_steps": 720,
485
+ "num_input_tokens_seen": 0,
486
+ "num_train_epochs": 21,
487
+ "save_steps": 300,
488
+ "stateful_callbacks": {
489
+ "TrainerControl": {
490
+ "args": {
491
+ "should_epoch_stop": false,
492
+ "should_evaluate": false,
493
+ "should_log": false,
494
+ "should_save": true,
495
+ "should_training_stop": true
496
+ },
497
+ "attributes": {}
498
+ }
499
+ },
500
+ "total_flos": 0.0,
501
+ "train_batch_size": 1,
502
+ "trial_name": null,
503
+ "trial_params": null
504
+ }
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)