--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9366815846179347 - name: Recall type: recall value: 0.9510265903736116 - name: F1 type: f1 value: 0.9437995824634655 - name: Accuracy type: accuracy value: 0.9859009831047272 --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0774 - Precision: 0.9367 - Recall: 0.9510 - F1: 0.9438 - Accuracy: 0.9859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0866 | 1.0 | 1756 | 0.0715 | 0.9181 | 0.9357 | 0.9268 | 0.9818 | | 0.0354 | 2.0 | 3512 | 0.0710 | 0.9288 | 0.9487 | 0.9386 | 0.9850 | | 0.0191 | 3.0 | 5268 | 0.0681 | 0.9337 | 0.9477 | 0.9406 | 0.9857 | | 0.0139 | 4.0 | 7024 | 0.0694 | 0.9342 | 0.9514 | 0.9427 | 0.9856 | | 0.008 | 5.0 | 8780 | 0.0774 | 0.9367 | 0.9510 | 0.9438 | 0.9859 | ### Framework versions - Transformers 4.26.0 - Pytorch 2.0.0+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2