File size: 3,246 Bytes
7bcd401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-small
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: doc-topic-model_eval-02_train-04
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# doc-topic-model_eval-02_train-04

This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0381
- Accuracy: 0.9879
- F1: 0.6381
- Precision: 0.7172
- Recall: 0.5747

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 256
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.0934        | 0.4929 | 1000  | 0.0904          | 0.9814   | 0.0    | 0.0       | 0.0    |
| 0.0778        | 0.9857 | 2000  | 0.0702          | 0.9814   | 0.0    | 0.0       | 0.0    |
| 0.0618        | 1.4786 | 3000  | 0.0567          | 0.9828   | 0.1751 | 0.8200    | 0.0980 |
| 0.0535        | 1.9714 | 4000  | 0.0492          | 0.9843   | 0.3358 | 0.7842    | 0.2136 |
| 0.0473        | 2.4643 | 5000  | 0.0455          | 0.9855   | 0.4668 | 0.7407    | 0.3408 |
| 0.0436        | 2.9571 | 6000  | 0.0426          | 0.9861   | 0.5016 | 0.7524    | 0.3763 |
| 0.0389        | 3.4500 | 7000  | 0.0407          | 0.9865   | 0.5337 | 0.7497    | 0.4143 |
| 0.0376        | 3.9428 | 8000  | 0.0399          | 0.9866   | 0.5634 | 0.7187    | 0.4633 |
| 0.0339        | 4.4357 | 9000  | 0.0389          | 0.9870   | 0.5653 | 0.7472    | 0.4547 |
| 0.0337        | 4.9285 | 10000 | 0.0385          | 0.9873   | 0.5815 | 0.7552    | 0.4728 |
| 0.0295        | 5.4214 | 11000 | 0.0377          | 0.9872   | 0.6024 | 0.7156    | 0.5202 |
| 0.0305        | 5.9142 | 12000 | 0.0383          | 0.9874   | 0.5992 | 0.7317    | 0.5074 |
| 0.0254        | 6.4071 | 13000 | 0.0375          | 0.9876   | 0.6141 | 0.7281    | 0.5310 |
| 0.0273        | 6.9000 | 14000 | 0.0379          | 0.9877   | 0.6163 | 0.7325    | 0.5319 |
| 0.0228        | 7.3928 | 15000 | 0.0379          | 0.9877   | 0.6165 | 0.7367    | 0.5300 |
| 0.0235        | 7.8857 | 16000 | 0.0379          | 0.9874   | 0.6298 | 0.6930    | 0.5773 |
| 0.0208        | 8.3785 | 17000 | 0.0379          | 0.9877   | 0.6341 | 0.7129    | 0.5710 |
| 0.0204        | 8.8714 | 18000 | 0.0381          | 0.9879   | 0.6381 | 0.7172    | 0.5747 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1