--- library_name: transformers license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: doc-topic-model_eval-04_train-00 results: [] --- # doc-topic-model_eval-04_train-00 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0377 - Accuracy: 0.9880 - F1: 0.6385 - Precision: 0.7205 - Recall: 0.5733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0929 | 0.4931 | 1000 | 0.0906 | 0.9815 | 0.0 | 0.0 | 0.0 | | 0.0785 | 0.9862 | 2000 | 0.0704 | 0.9815 | 0.0 | 0.0 | 0.0 | | 0.0622 | 1.4793 | 3000 | 0.0572 | 0.9823 | 0.1022 | 0.8442 | 0.0544 | | 0.0542 | 1.9724 | 4000 | 0.0499 | 0.9843 | 0.3390 | 0.7662 | 0.2176 | | 0.048 | 2.4655 | 5000 | 0.0459 | 0.9853 | 0.4278 | 0.7709 | 0.2960 | | 0.0436 | 2.9586 | 6000 | 0.0429 | 0.9863 | 0.5135 | 0.7466 | 0.3913 | | 0.0384 | 3.4517 | 7000 | 0.0411 | 0.9868 | 0.5512 | 0.7418 | 0.4386 | | 0.0385 | 3.9448 | 8000 | 0.0396 | 0.9868 | 0.5391 | 0.7659 | 0.4159 | | 0.0343 | 4.4379 | 9000 | 0.0392 | 0.9870 | 0.5622 | 0.7475 | 0.4505 | | 0.0343 | 4.9310 | 10000 | 0.0383 | 0.9872 | 0.5747 | 0.7490 | 0.4662 | | 0.0304 | 5.4241 | 11000 | 0.0381 | 0.9873 | 0.5883 | 0.7375 | 0.4894 | | 0.0299 | 5.9172 | 12000 | 0.0367 | 0.9877 | 0.6116 | 0.7341 | 0.5242 | | 0.0265 | 6.4103 | 13000 | 0.0374 | 0.9876 | 0.6157 | 0.7219 | 0.5367 | | 0.0261 | 6.9034 | 14000 | 0.0365 | 0.9879 | 0.6179 | 0.7448 | 0.5279 | | 0.0236 | 7.3964 | 15000 | 0.0374 | 0.9877 | 0.6228 | 0.7218 | 0.5476 | | 0.0236 | 7.8895 | 16000 | 0.0372 | 0.9880 | 0.6263 | 0.7356 | 0.5453 | | 0.0215 | 8.3826 | 17000 | 0.0376 | 0.9879 | 0.6326 | 0.7199 | 0.5642 | | 0.0216 | 8.8757 | 18000 | 0.0381 | 0.9878 | 0.6322 | 0.7149 | 0.5666 | | 0.0177 | 9.3688 | 19000 | 0.0377 | 0.9880 | 0.6385 | 0.7205 | 0.5733 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1