Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 191.59 +/- 80.98
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd6407f0c20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd6407f0cb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd6407f0d40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd6407f0dd0>", "_build": "<function ActorCriticPolicy._build at 0x7fd6407f0e60>", "forward": "<function ActorCriticPolicy.forward at 0x7fd6407f0ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd6407f0f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd6407f6050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd6407f60e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd6407f6170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd6407f6200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd64083b960>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651747371.7006087, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJotrb3sWZm5PXvKOu2hIja8n147i+vwuQAAAAAAAIA/GtYMvfaQfrpKc7o5vPURs0bsMbsN79W4AACAPwAAgD/tL0G+0lHPuxlJmrtsjjS50yRLPe4ZGDoAAIA/AACAP43sMb6FjfO7ruEsvG1hErpGGkU9frX1OgAAgD8AAIA/5swjPr3LQDxI3vY6G6X2OCBl2D24Bi26AACAPwAAgD/a8U6+iGvSvA07CLxKT426AUE4PmVPWjsAAIA/AACAPwD5xj3DER66WMlivM/3JTM/FQQ34qBVswAAgD8AAIA/jVQ/PhR8vDsY3f+5MvtPuKFeaz2VUB05AACAPwAAgD+N5uU9haOwufYgUDoVC6a1FoALukZ8dbkAAAAAAACAP5oOnr2jciI/lrN4PVW9lL7bBHC9qMRsPQAAAAAAAAAAQOy1PZbPAT8jKp09TPZ+vhVtqrtFCva8AAAAAAAAAACApBW+sVabP57IJ79MbeW+yQpRvdpOg74AAAAAAAAAAGYJQT4K2gI856q9PRy6wL1m5pM94sGYvgAAAAAAAIA/ZixBva6RnbrIxwA8Z+7ZNq8yw7nqxc41AACAPwAAgD+aqLq9w2EfurOhxztqZmU3eSC9urVYRzYAAIA/AACAP2a8FLwOf4c/IDGDu3FYkr6KsuC9rDvJvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIn3QiwVRNTkCUhpRSlIwBbJRN6AOMAXSUR0CG8ov3ai9JdX2UKGgGaAloD0MIOiLfpVSQaUCUhpRSlGgVTUQCaBZHQIbyvDej2zx1fZQoaAZoCWgPQwjoTrD/OjdeQJSGlFKUaBVN6ANoFkdAhvq9Sl3yJHV9lChoBmgJaA9DCDm2niEcCy1AlIaUUpRoFU2UA2gWR0CHA1+JgsshdX2UKGgGaAloD0MIPs3Ji0yWXECUhpRSlGgVTegDaBZHQIcJX+Idlup1fZQoaAZoCWgPQwj9EBssnKQkQJSGlFKUaBVN6ANoFkdAhxwDaPCEYnV9lChoBmgJaA9DCMBBe/Xx/19AlIaUUpRoFU3oA2gWR0CHIagUUO/ddX2UKGgGaAloD0MIKGTnbWxEU0CUhpRSlGgVTegDaBZHQIcjMNBnjAB1fZQoaAZoCWgPQwhKXp1jQCpNQJSGlFKUaBVN6ANoFkdAhyujJuEVWXV9lChoBmgJaA9DCB3k9WBSUDNAlIaUUpRoFU3oA2gWR0CHUjn6Eal2dX2UKGgGaAloD0MI61Ij9DPpWkCUhpRSlGgVTegDaBZHQIej1rwe/6B1fZQoaAZoCWgPQwi1qbpHNiBiQJSGlFKUaBVN6ANoFkdAh8Hn/Lkjo3V9lChoBmgJaA9DCOBIoMGmbF9AlIaUUpRoFU3oA2gWR0CHyPnDBMzudX2UKGgGaAloD0MI1c+bilQcTkCUhpRSlGgVTegDaBZHQIfMV2zOX3R1fZQoaAZoCWgPQwjiV6zhIhFaQJSGlFKUaBVN6ANoFkdAh9OhUrCm/HV9lChoBmgJaA9DCF/Tg4JSeFpAlIaUUpRoFU3oA2gWR0CH36CT2WY4dX2UKGgGaAloD0MI7dPxmIGXVUCUhpRSlGgVTegDaBZHQIfhofZElVt1fZQoaAZoCWgPQwiRnbex2SRaQJSGlFKUaBVN6ANoFkdAh+HNhd+ocnV9lChoBmgJaA9DCN83vvbMdV9AlIaUUpRoFU3oA2gWR0CH6WpSaVlgdX2UKGgGaAloD0MIY7Mj1XfiSkCUhpRSlGgVTegDaBZHQIfxXskY4yZ1fZQoaAZoCWgPQwhQxvgwe7kqQJSGlFKUaBVNAQFoFkdAh/TMeGO+7HV9lChoBmgJaA9DCCxn74y2z1RAlIaUUpRoFU3oA2gWR0CH9vFVDKHPdX2UKGgGaAloD0MIOSnMe5z3WkCUhpRSlGgVTegDaBZHQIgIHCqIacZ1fZQoaAZoCWgPQwiPbK6a56pKQJSGlFKUaBVN6ANoFkdAiA06/7BO6HV9lChoBmgJaA9DCKKcaFehR2JAlIaUUpRoFU3oA2gWR0CIDpwQ176YdX2UKGgGaAloD0MIZ/M4DOb/T0CUhpRSlGgVTegDaBZHQIgWSQ3gk1N1fZQoaAZoCWgPQwjB5hw8E9VcQJSGlFKUaBVN6ANoFkdAiDry+pOvdXV9lChoBmgJaA9DCPJBz2bVTFlAlIaUUpRoFU3oA2gWR0CIjZFDv3JxdX2UKGgGaAloD0MI/FI/byp1W0CUhpRSlGgVTegDaBZHQIiuFM9KVY91fZQoaAZoCWgPQwiJ0t7gC59fQJSGlFKUaBVN6ANoFkdAiLWxfF72MHV9lChoBmgJaA9DCN0KYTWWoVhAlIaUUpRoFU3oA2gWR0CIwaFSsKb8dX2UKGgGaAloD0MIpYeh1Um4YECUhpRSlGgVTegDaBZHQIjPSrzXjEN1fZQoaAZoCWgPQwgHJjeKrPFeQJSGlFKUaBVN6ANoFkdAiNGhJRO1v3V9lChoBmgJaA9DCDVDqihe01xAlIaUUpRoFU3oA2gWR0CI0dQrMC9zdX2UKGgGaAloD0MI8yA9RQ7PX0CUhpRSlGgVTegDaBZHQIja6up0fYB1fZQoaAZoCWgPQwhvDtdqD4ZcQJSGlFKUaBVN6ANoFkdAiORsLv1DjXV9lChoBmgJaA9DCBSvsrYpWExAlIaUUpRoFU3oA2gWR0CI6C31jAi3dX2UKGgGaAloD0MI02hyMQZpW0CUhpRSlGgVTegDaBZHQIjqaVnmJWN1fZQoaAZoCWgPQwi6TbhX5udfQJSGlFKUaBVN6ANoFkdAiPm6FdszmHV9lChoBmgJaA9DCNo8DoP5c0hAlIaUUpRoFU3oA2gWR0CI/mSdOIqLdX2UKGgGaAloD0MI6fF7m/6gYECUhpRSlGgVTegDaBZHQIj/qfWcz691fZQoaAZoCWgPQwg2r+qsFngKQJSGlFKUaBVNJAFoFkdAiQXwiJO32HV9lChoBmgJaA9DCAsqqn6lZVFAlIaUUpRoFU3oA2gWR0CJBtCEYfnwdX2UKGgGaAloD0MIfh04Z0RTWECUhpRSlGgVTegDaBZHQIkpmn0kGA11fZQoaAZoCWgPQwiT36KTpcRZQJSGlFKUaBVN6ANoFkdAiXybp3X7L3V9lChoBmgJaA9DCNaLoZxozWBAlIaUUpRoFU3oA2gWR0CJnkTs6aLGdX2UKGgGaAloD0MIeVioNc1sXUCUhpRSlGgVTegDaBZHQIml6o/A0sR1fZQoaAZoCWgPQwjeWbvtQjpXQJSGlFKUaBVN6ANoFkdAibHbhegL7XV9lChoBmgJaA9DCNPaNLZXImBAlIaUUpRoFU3oA2gWR0CJv+iBXjlxdX2UKGgGaAloD0MIg4WTNH/nVECUhpRSlGgVTegDaBZHQInCMFY+0PZ1fZQoaAZoCWgPQwgiizTxDp1hQJSGlFKUaBVN6ANoFkdAicJiJO32EnV9lChoBmgJaA9DCHV4COOn8FtAlIaUUpRoFU3oA2gWR0CJ1Nqjafz0dX2UKGgGaAloD0MINo/DYP4ZWkCUhpRSlGgVTegDaBZHQInY1ZLZi/h1fZQoaAZoCWgPQwgfveE+chZdQJSGlFKUaBVN6ANoFkdAidsuAy2x6nV9lChoBmgJaA9DCFH6Qsh5yFhAlIaUUpRoFU3oA2gWR0CJ7RmRvFWGdX2UKGgGaAloD0MIjWDj+neNV0CUhpRSlGgVTegDaBZHQInygiLVFx51fZQoaAZoCWgPQwgttHOaBZVbQJSGlFKUaBVN6ANoFkdAifPz3IuGsXV9lChoBmgJaA9DCLWHvVDA8V5AlIaUUpRoFU3oA2gWR0CJ+ojFAE+xdX2UKGgGaAloD0MIJ4i6D0CkX0CUhpRSlGgVTegDaBZHQIn7bU/fO2R1fZQoaAZoCWgPQwh15h4SvupqQJSGlFKUaBVNjAFoFkdAigHWVE/jbXV9lChoBmgJaA9DCDNt/8pKmUDAlIaUUpRoFU0rAWgWR0CKA4aya/h3dX2UKGgGaAloD0MIL90kBoEYW0CUhpRSlGgVTegDaBZHQIoa01wYLst1fZQoaAZoCWgPQwj8juGxn8U2QJSGlFKUaBVNLAFoFkdAiiHjLjghr3V9lChoBmgJaA9DCKQZi6azVVFAlIaUUpRoFU3oA2gWR0CKa4Elme18dX2UKGgGaAloD0MI+FW5UPn9RsCUhpRSlGgVTVcBaBZHQIpvanHeaa11fZQoaAZoCWgPQwhn8WJhiPdUQJSGlFKUaBVN6ANoFkdAiolg2606YHV9lChoBmgJaA9DCB6jPPNyJ1dAlIaUUpRoFU3oA2gWR0CKkNoFFDv3dX2UKGgGaAloD0MIqWis/Z1XR0CUhpRSlGgVTegDaBZHQIqcvfZVXFN1fZQoaAZoCWgPQwjkZyPXTW1cQJSGlFKUaBVN6ANoFkdAiqrvZh8YynV9lChoBmgJaA9DCBYx7DAmdVlAlIaUUpRoFU3oA2gWR0CKrYX4TK1YdX2UKGgGaAloD0MIRzgteNFIY0CUhpRSlGgVTegDaBZHQIrHUl7dBSl1fZQoaAZoCWgPQwiiYMYUrExSQJSGlFKUaBVN6ANoFkdAispST6i0wHV9lChoBmgJaA9DCDfHuU24QUVAlIaUUpRoFU1bAWgWR0CKzj1SOzY3dX2UKGgGaAloD0MIhbUxdsIBQ8CUhpRSlGgVTS4BaBZHQIrXL7yhBZ91fZQoaAZoCWgPQwgkRs8tdLleQJSGlFKUaBVN6ANoFkdAit5hMzuWr3V9lChoBmgJaA9DCG399J81NFxAlIaUUpRoFU3oA2gWR0CK49kPtlZpdX2UKGgGaAloD0MI+MH51LFgXECUhpRSlGgVTegDaBZHQIruEzImw7l1fZQoaAZoCWgPQwjQtwVLdYtaQJSGlFKUaBVN6ANoFkdAivV3NcGC7XV9lChoBmgJaA9DCPxuumWHCldAlIaUUpRoFU3oA2gWR0CK92ZAIIGAdX2UKGgGaAloD0MIpztPPGcL47+UhpRSlGgVTS4BaBZHQIr7cf3evZB1fZQoaAZoCWgPQwgGobyPI45gQJSGlFKUaBVN6ANoFkdAixDDifg75nV9lChoBmgJaA9DCP4rK03KYmBAlIaUUpRoFU3oA2gWR0CLGHF+d9UkdX2UKGgGaAloD0MI1CzQ7pDpXkCUhpRSlGgVTegDaBZHQIsk6bz9S/F1fZQoaAZoCWgPQwhETfT5KDJeQJSGlFKUaBVN6ANoFkdAi2XqzJIUanV9lChoBmgJaA9DCAXeyafHUldAlIaUUpRoFU3oA2gWR0CLhkBRyfcvdX2UKGgGaAloD0MIj2yummfLYUCUhpRSlGgVTegDaBZHQIugg/xDst11fZQoaAZoCWgPQwhUqG4u/qlcQJSGlFKUaBVN6ANoFkdAi6MXzUZvUHV9lChoBmgJaA9DCCP0M/W661ZAlIaUUpRoFU3oA2gWR0CLwDaX8fmtdX2UKGgGaAloD0MIqS7gZYa/VECUhpRSlGgVTegDaBZHQIvEZeNT9891fZQoaAZoCWgPQwja/pWVJnNZQJSGlFKUaBVN6ANoFkdAi82nWattAXV9lChoBmgJaA9DCOdu10vTQGFAlIaUUpRoFU3oA2gWR0CL1QsEq2BrdX2UKGgGaAloD0MIvaYHBSWCYUCUhpRSlGgVTegDaBZHQIvazgdfb9J1fZQoaAZoCWgPQwim1CXjmEJgQJSGlFKUaBVN6ANoFkdAi+SlFDv3J3V9lChoBmgJaA9DCGrBi76CpVxAlIaUUpRoFU3oA2gWR0CL7Ed5IH1OdX2UKGgGaAloD0MItW/urx5kX0CUhpRSlGgVTegDaBZHQIvuP2/SH/N1fZQoaAZoCWgPQwixbOaQ1EFhQJSGlFKUaBVN6ANoFkdAi/J9Q40dinV9lChoBmgJaA9DCA6Cjla18FxAlIaUUpRoFU3oA2gWR0CMBzV+7UXpdX2UKGgGaAloD0MIcv27PnNRXUCUhpRSlGgVTegDaBZHQIwOUmjTKDF1fZQoaAZoCWgPQwg7Vb5nJENjQJSGlFKUaBVN6ANoFkdAjBokPczqKXV9lChoBmgJaA9DCBwkRPmCpF9AlIaUUpRoFU3oA2gWR0CMHf7O3UhFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89f7625ec02625b6df24a4692014a281ddff1ee127ee2b92107707a34f9e5538
|
3 |
+
size 144048
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd6407f0c20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd6407f0cb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd6407f0d40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd6407f0dd0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd6407f0e60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd6407f0ef0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd6407f0f80>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd6407f6050>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd6407f60e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd6407f6170>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd6407f6200>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fd64083b960>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651747371.7006087,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJotrb3sWZm5PXvKOu2hIja8n147i+vwuQAAAAAAAIA/GtYMvfaQfrpKc7o5vPURs0bsMbsN79W4AACAPwAAgD/tL0G+0lHPuxlJmrtsjjS50yRLPe4ZGDoAAIA/AACAP43sMb6FjfO7ruEsvG1hErpGGkU9frX1OgAAgD8AAIA/5swjPr3LQDxI3vY6G6X2OCBl2D24Bi26AACAPwAAgD/a8U6+iGvSvA07CLxKT426AUE4PmVPWjsAAIA/AACAPwD5xj3DER66WMlivM/3JTM/FQQ34qBVswAAgD8AAIA/jVQ/PhR8vDsY3f+5MvtPuKFeaz2VUB05AACAPwAAgD+N5uU9haOwufYgUDoVC6a1FoALukZ8dbkAAAAAAACAP5oOnr2jciI/lrN4PVW9lL7bBHC9qMRsPQAAAAAAAAAAQOy1PZbPAT8jKp09TPZ+vhVtqrtFCva8AAAAAAAAAACApBW+sVabP57IJ79MbeW+yQpRvdpOg74AAAAAAAAAAGYJQT4K2gI856q9PRy6wL1m5pM94sGYvgAAAAAAAIA/ZixBva6RnbrIxwA8Z+7ZNq8yw7nqxc41AACAPwAAgD+aqLq9w2EfurOhxztqZmU3eSC9urVYRzYAAIA/AACAP2a8FLwOf4c/IDGDu3FYkr6KsuC9rDvJvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIn3QiwVRNTkCUhpRSlIwBbJRN6AOMAXSUR0CG8ov3ai9JdX2UKGgGaAloD0MIOiLfpVSQaUCUhpRSlGgVTUQCaBZHQIbyvDej2zx1fZQoaAZoCWgPQwjoTrD/OjdeQJSGlFKUaBVN6ANoFkdAhvq9Sl3yJHV9lChoBmgJaA9DCDm2niEcCy1AlIaUUpRoFU2UA2gWR0CHA1+JgsshdX2UKGgGaAloD0MIPs3Ji0yWXECUhpRSlGgVTegDaBZHQIcJX+Idlup1fZQoaAZoCWgPQwj9EBssnKQkQJSGlFKUaBVN6ANoFkdAhxwDaPCEYnV9lChoBmgJaA9DCMBBe/Xx/19AlIaUUpRoFU3oA2gWR0CHIagUUO/ddX2UKGgGaAloD0MIKGTnbWxEU0CUhpRSlGgVTegDaBZHQIcjMNBnjAB1fZQoaAZoCWgPQwhKXp1jQCpNQJSGlFKUaBVN6ANoFkdAhyujJuEVWXV9lChoBmgJaA9DCB3k9WBSUDNAlIaUUpRoFU3oA2gWR0CHUjn6Eal2dX2UKGgGaAloD0MI61Ij9DPpWkCUhpRSlGgVTegDaBZHQIej1rwe/6B1fZQoaAZoCWgPQwi1qbpHNiBiQJSGlFKUaBVN6ANoFkdAh8Hn/Lkjo3V9lChoBmgJaA9DCOBIoMGmbF9AlIaUUpRoFU3oA2gWR0CHyPnDBMzudX2UKGgGaAloD0MI1c+bilQcTkCUhpRSlGgVTegDaBZHQIfMV2zOX3R1fZQoaAZoCWgPQwjiV6zhIhFaQJSGlFKUaBVN6ANoFkdAh9OhUrCm/HV9lChoBmgJaA9DCF/Tg4JSeFpAlIaUUpRoFU3oA2gWR0CH36CT2WY4dX2UKGgGaAloD0MI7dPxmIGXVUCUhpRSlGgVTegDaBZHQIfhofZElVt1fZQoaAZoCWgPQwiRnbex2SRaQJSGlFKUaBVN6ANoFkdAh+HNhd+ocnV9lChoBmgJaA9DCN83vvbMdV9AlIaUUpRoFU3oA2gWR0CH6WpSaVlgdX2UKGgGaAloD0MIY7Mj1XfiSkCUhpRSlGgVTegDaBZHQIfxXskY4yZ1fZQoaAZoCWgPQwhQxvgwe7kqQJSGlFKUaBVNAQFoFkdAh/TMeGO+7HV9lChoBmgJaA9DCCxn74y2z1RAlIaUUpRoFU3oA2gWR0CH9vFVDKHPdX2UKGgGaAloD0MIOSnMe5z3WkCUhpRSlGgVTegDaBZHQIgIHCqIacZ1fZQoaAZoCWgPQwiPbK6a56pKQJSGlFKUaBVN6ANoFkdAiA06/7BO6HV9lChoBmgJaA9DCKKcaFehR2JAlIaUUpRoFU3oA2gWR0CIDpwQ176YdX2UKGgGaAloD0MIZ/M4DOb/T0CUhpRSlGgVTegDaBZHQIgWSQ3gk1N1fZQoaAZoCWgPQwjB5hw8E9VcQJSGlFKUaBVN6ANoFkdAiDry+pOvdXV9lChoBmgJaA9DCPJBz2bVTFlAlIaUUpRoFU3oA2gWR0CIjZFDv3JxdX2UKGgGaAloD0MI/FI/byp1W0CUhpRSlGgVTegDaBZHQIiuFM9KVY91fZQoaAZoCWgPQwiJ0t7gC59fQJSGlFKUaBVN6ANoFkdAiLWxfF72MHV9lChoBmgJaA9DCN0KYTWWoVhAlIaUUpRoFU3oA2gWR0CIwaFSsKb8dX2UKGgGaAloD0MIpYeh1Um4YECUhpRSlGgVTegDaBZHQIjPSrzXjEN1fZQoaAZoCWgPQwgHJjeKrPFeQJSGlFKUaBVN6ANoFkdAiNGhJRO1v3V9lChoBmgJaA9DCDVDqihe01xAlIaUUpRoFU3oA2gWR0CI0dQrMC9zdX2UKGgGaAloD0MI8yA9RQ7PX0CUhpRSlGgVTegDaBZHQIja6up0fYB1fZQoaAZoCWgPQwhvDtdqD4ZcQJSGlFKUaBVN6ANoFkdAiORsLv1DjXV9lChoBmgJaA9DCBSvsrYpWExAlIaUUpRoFU3oA2gWR0CI6C31jAi3dX2UKGgGaAloD0MI02hyMQZpW0CUhpRSlGgVTegDaBZHQIjqaVnmJWN1fZQoaAZoCWgPQwi6TbhX5udfQJSGlFKUaBVN6ANoFkdAiPm6FdszmHV9lChoBmgJaA9DCNo8DoP5c0hAlIaUUpRoFU3oA2gWR0CI/mSdOIqLdX2UKGgGaAloD0MI6fF7m/6gYECUhpRSlGgVTegDaBZHQIj/qfWcz691fZQoaAZoCWgPQwg2r+qsFngKQJSGlFKUaBVNJAFoFkdAiQXwiJO32HV9lChoBmgJaA9DCAsqqn6lZVFAlIaUUpRoFU3oA2gWR0CJBtCEYfnwdX2UKGgGaAloD0MIfh04Z0RTWECUhpRSlGgVTegDaBZHQIkpmn0kGA11fZQoaAZoCWgPQwiT36KTpcRZQJSGlFKUaBVN6ANoFkdAiXybp3X7L3V9lChoBmgJaA9DCNaLoZxozWBAlIaUUpRoFU3oA2gWR0CJnkTs6aLGdX2UKGgGaAloD0MIeVioNc1sXUCUhpRSlGgVTegDaBZHQIml6o/A0sR1fZQoaAZoCWgPQwjeWbvtQjpXQJSGlFKUaBVN6ANoFkdAibHbhegL7XV9lChoBmgJaA9DCNPaNLZXImBAlIaUUpRoFU3oA2gWR0CJv+iBXjlxdX2UKGgGaAloD0MIg4WTNH/nVECUhpRSlGgVTegDaBZHQInCMFY+0PZ1fZQoaAZoCWgPQwgiizTxDp1hQJSGlFKUaBVN6ANoFkdAicJiJO32EnV9lChoBmgJaA9DCHV4COOn8FtAlIaUUpRoFU3oA2gWR0CJ1Nqjafz0dX2UKGgGaAloD0MINo/DYP4ZWkCUhpRSlGgVTegDaBZHQInY1ZLZi/h1fZQoaAZoCWgPQwgfveE+chZdQJSGlFKUaBVN6ANoFkdAidsuAy2x6nV9lChoBmgJaA9DCFH6Qsh5yFhAlIaUUpRoFU3oA2gWR0CJ7RmRvFWGdX2UKGgGaAloD0MIjWDj+neNV0CUhpRSlGgVTegDaBZHQInygiLVFx51fZQoaAZoCWgPQwgttHOaBZVbQJSGlFKUaBVN6ANoFkdAifPz3IuGsXV9lChoBmgJaA9DCLWHvVDA8V5AlIaUUpRoFU3oA2gWR0CJ+ojFAE+xdX2UKGgGaAloD0MIJ4i6D0CkX0CUhpRSlGgVTegDaBZHQIn7bU/fO2R1fZQoaAZoCWgPQwh15h4SvupqQJSGlFKUaBVNjAFoFkdAigHWVE/jbXV9lChoBmgJaA9DCDNt/8pKmUDAlIaUUpRoFU0rAWgWR0CKA4aya/h3dX2UKGgGaAloD0MIL90kBoEYW0CUhpRSlGgVTegDaBZHQIoa01wYLst1fZQoaAZoCWgPQwj8juGxn8U2QJSGlFKUaBVNLAFoFkdAiiHjLjghr3V9lChoBmgJaA9DCKQZi6azVVFAlIaUUpRoFU3oA2gWR0CKa4Elme18dX2UKGgGaAloD0MI+FW5UPn9RsCUhpRSlGgVTVcBaBZHQIpvanHeaa11fZQoaAZoCWgPQwhn8WJhiPdUQJSGlFKUaBVN6ANoFkdAiolg2606YHV9lChoBmgJaA9DCB6jPPNyJ1dAlIaUUpRoFU3oA2gWR0CKkNoFFDv3dX2UKGgGaAloD0MIqWis/Z1XR0CUhpRSlGgVTegDaBZHQIqcvfZVXFN1fZQoaAZoCWgPQwjkZyPXTW1cQJSGlFKUaBVN6ANoFkdAiqrvZh8YynV9lChoBmgJaA9DCBYx7DAmdVlAlIaUUpRoFU3oA2gWR0CKrYX4TK1YdX2UKGgGaAloD0MIRzgteNFIY0CUhpRSlGgVTegDaBZHQIrHUl7dBSl1fZQoaAZoCWgPQwiiYMYUrExSQJSGlFKUaBVN6ANoFkdAispST6i0wHV9lChoBmgJaA9DCDfHuU24QUVAlIaUUpRoFU1bAWgWR0CKzj1SOzY3dX2UKGgGaAloD0MIhbUxdsIBQ8CUhpRSlGgVTS4BaBZHQIrXL7yhBZ91fZQoaAZoCWgPQwgkRs8tdLleQJSGlFKUaBVN6ANoFkdAit5hMzuWr3V9lChoBmgJaA9DCG399J81NFxAlIaUUpRoFU3oA2gWR0CK49kPtlZpdX2UKGgGaAloD0MI+MH51LFgXECUhpRSlGgVTegDaBZHQIruEzImw7l1fZQoaAZoCWgPQwjQtwVLdYtaQJSGlFKUaBVN6ANoFkdAivV3NcGC7XV9lChoBmgJaA9DCPxuumWHCldAlIaUUpRoFU3oA2gWR0CK92ZAIIGAdX2UKGgGaAloD0MIpztPPGcL47+UhpRSlGgVTS4BaBZHQIr7cf3evZB1fZQoaAZoCWgPQwgGobyPI45gQJSGlFKUaBVN6ANoFkdAixDDifg75nV9lChoBmgJaA9DCP4rK03KYmBAlIaUUpRoFU3oA2gWR0CLGHF+d9UkdX2UKGgGaAloD0MI1CzQ7pDpXkCUhpRSlGgVTegDaBZHQIsk6bz9S/F1fZQoaAZoCWgPQwhETfT5KDJeQJSGlFKUaBVN6ANoFkdAi2XqzJIUanV9lChoBmgJaA9DCAXeyafHUldAlIaUUpRoFU3oA2gWR0CLhkBRyfcvdX2UKGgGaAloD0MIj2yummfLYUCUhpRSlGgVTegDaBZHQIugg/xDst11fZQoaAZoCWgPQwhUqG4u/qlcQJSGlFKUaBVN6ANoFkdAi6MXzUZvUHV9lChoBmgJaA9DCCP0M/W661ZAlIaUUpRoFU3oA2gWR0CLwDaX8fmtdX2UKGgGaAloD0MIqS7gZYa/VECUhpRSlGgVTegDaBZHQIvEZeNT9891fZQoaAZoCWgPQwja/pWVJnNZQJSGlFKUaBVN6ANoFkdAi82nWattAXV9lChoBmgJaA9DCOdu10vTQGFAlIaUUpRoFU3oA2gWR0CL1QsEq2BrdX2UKGgGaAloD0MIvaYHBSWCYUCUhpRSlGgVTegDaBZHQIvazgdfb9J1fZQoaAZoCWgPQwim1CXjmEJgQJSGlFKUaBVN6ANoFkdAi+SlFDv3J3V9lChoBmgJaA9DCGrBi76CpVxAlIaUUpRoFU3oA2gWR0CL7Ed5IH1OdX2UKGgGaAloD0MItW/urx5kX0CUhpRSlGgVTegDaBZHQIvuP2/SH/N1fZQoaAZoCWgPQwixbOaQ1EFhQJSGlFKUaBVN6ANoFkdAi/J9Q40dinV9lChoBmgJaA9DCA6Cjla18FxAlIaUUpRoFU3oA2gWR0CMBzV+7UXpdX2UKGgGaAloD0MIcv27PnNRXUCUhpRSlGgVTegDaBZHQIwOUmjTKDF1fZQoaAZoCWgPQwg7Vb5nJENjQJSGlFKUaBVN6ANoFkdAjBokPczqKXV9lChoBmgJaA9DCBwkRPmCpF9AlIaUUpRoFU3oA2gWR0CMHf7O3UhFdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b58dd8c81e3b456006b9b09f74b01d1d52c040901f2f2359aa7202aca610da1a
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dac049c61a3d94cb5c6f102f08cdaf09d0b0c2c9d53592f33a8d3edfbaf2f355
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71f4fc3458706a199d46cce762268c8721dc09f6d029a7a3c4985ff65bfb4615
|
3 |
+
size 224316
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 191.58796306826875, "std_reward": 80.9833541123639, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T10:58:42.627065"}
|