--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer datasets: - winglian/evolkit-logprobs-pipeline-75k-v2 model-index: - name: outputs/out-1b-kd-more-saves results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: meta-llama/Llama-3.2-1B tokenizer_config: meta-llama/Llama-3.2-3B # Automatically upload checkpoint and final model to HF #hub_model_id: axolotl-ai-co/numina-3b-v4-zscore-ep3-lr3e-5-0_5-0_5 plugins: - axolotl.integrations.kd.KDPlugin - axolotl.integrations.liger.LigerPlugin liger_rms_norm: true liger_glu_activation: true torch_compile: true strict: false chat_template: llama3 kd_trainer: true kd_ce_alpha: 0.1 kd_alpha: 0.9 kd_temperature: 1.0 # kd_zscore_base_temp: 1.0 dataloader_prefetch_factor: 256 dataloader_num_workers: 4 dataloader_pin_memory: true gc_steps: -1 # gc at the end of each epoch datasets: - field_messages: messages_combined message_field_content: content message_field_role: role logprobs_field: llm_text_generation_vllm_logprobs path: winglian/evolkit-logprobs-pipeline-75k-v2 type: axolotl.integrations.kd.chat_template split: train temperature: 1.0 dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: ./outputs/out-1b-kd-more-saves sequence_len: 8192 sample_packing: true pad_to_sequence_len: true wandb_project: lobprob-kd-evolkit wandb_entity: axolotl-ai wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 4 num_epochs: 3 optimizer: adamw_torch_fused lr_scheduler: cosine learning_rate: 3e-5 save_safetensors: true train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 2 eval_table_size: saves_per_epoch: 20 debug: # deepspeed: deepspeed_configs/zero1.json weight_decay: 0.0 special_tokens: pad_token: <|finetune_right_pad_id|> eos_token: <|eot_id|> ```

# outputs/out-1b-kd-more-saves This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on the winglian/evolkit-logprobs-pipeline-75k-v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0