--- base_model: meta-llama/Meta-Llama-3.1-405B library_name: peft license: llama3.1 tags: - generated_from_trainer model-index: - name: outputs/out/qlora-llama3_1-405b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3.1-405B tokenizer_type: AutoTokenizer load_in_4bit: true strict: false datasets: - path: tatsu-lab/alpaca type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: ./outputs/out/qlora-llama3_1-405b wandb_project: qlora-fsdp-405b wandb_entity: oaaic adapter: qlora sequence_len: 2048 sample_packing: true pad_to_sequence_len: true lora_r: 16 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 4 optimizer: adamw_torch adam_beta1: 0.9 adam_beta2: 0.95 max_grad_norm: 0.1 lr_scheduler: cosine learning_rate: 0.00001 train_on_inputs: false group_by_length: false bf16: true tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true logging_steps: 1 flash_attention: true warmup_steps: 50 evals_per_epoch: 1 saves_per_epoch: 1 weight_decay: 0.0 fsdp: - full_shard - auto_wrap fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: true fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD special_tokens: pad_token: <|finetune_right_pad_id|> ```

# outputs/out/qlora-llama3_1-405b This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-405B](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - num_epochs: 4 ### Training results ### Framework versions - PEFT 0.11.1 - Transformers 4.43.3 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1