--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-3B tags: - axolotl - generated_from_trainer datasets: - axolotl-ai-co/numina-cot-logprobs-859k-8b-sft model-index: - name: numina-3b-ep3-lr3e-5-kd results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: meta-llama/Llama-3.2-3B # Automatically upload checkpoint and final model to HF hub_model_id: axolotl-ai-co/numina-3b-ep3-lr3e-5-kd plugins: - axolotl.integrations.kd.KDPlugin - axolotl.integrations.liger.LigerPlugin liger_rms_norm: true liger_glu_activation: true torch_compile: true strict: false chat_template: llama3 kd_trainer: true kd_ce_alpha: 0.4 kd_alpha: 1.0 kd_temperature: 2.0 dataloader_prefetch_factor: 512 dataloader_num_workers: 8 dataloader_pin_memory: true datasets: - field_messages: messages message_field_content: content message_field_role: role logprobs_field: llm_logprobs_logprobs path: axolotl-ai-co/numina-cot-logprobs-859k-8b-sft type: axolotl.integrations.kd.chat_template split: train temperature: 1.0 # preprocess_shards: 10 dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: ./outputs/out sequence_len: 8192 sample_packing: true pad_to_sequence_len: true wandb_project: numina-kd-experiment wandb_entity: axolotl-ai wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 4 num_epochs: 3 optimizer: adamw_8bit lr_scheduler: cosine learning_rate: 3e-5 save_safetensors: true train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 2 eval_table_size: saves_per_epoch: 1 debug: # deepspeed: deepspeed_configs/zero1.json weight_decay: 0.0 _fsdp: - full_shard - auto_wrap _fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: true fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD fsdp_backward_prefetch: BACKWARD_PRE special_tokens: pad_token: <|finetune_right_pad_id|> eos_token: <|eot_id|> ```

# numina-3b-ep3-lr3e-5-kd This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on the axolotl-ai-co/numina-cot-logprobs-859k-8b-sft dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0