File size: 4,551 Bytes
8eea494
63d59a8
 
 
 
 
 
 
8eea494
 
63d59a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a35ed1
63d59a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
---
library_name: peft
tags:
- generated_from_trainer
base_model: meta-llama/Llama-2-7b-hf
model-index:
- name: models/run2
  results: []
---


[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
# This file is used by the training script in train.ipynb. You can read more about
# the format and see more examples at https://github.com/OpenAccess-AI-Collective/axolotl.
# One of the parameters you might want to play around with is `num_epochs`: if you have a
# smaller dataset size, making that large can have good results.

base_model: meta-llama/Llama-2-7b-hf
base_model_config: meta-llama/Llama-2-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true

load_in_8bit: true
load_in_4bit: false
strict: false

datasets:
  - path: ./resources/train.jsonl
    type: alpaca
dataset_prepared_path: ./resources/last_run_prepared
val_set_size: 0.05
output_dir: ./models/run2

sequence_len: 4096
sample_packing: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

# This will report stats from your training run to https://wandb.ai/. If you don't want to create a wandb account you can comment this section out.
wandb_project: google-boolq
wandb_entity:
wandb_watch:
wandb_run_id: run2
wandb_log_model:


gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 5
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false

warmup_steps: 10
eval_steps: 20
save_steps: 60
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"
```

</details><br>

# models/run2

This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the google/boolq dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3248

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 8.1402        | 0.02  | 1    | 8.4654          |
| 0.3619        | 0.3   | 20   | 0.3422          |
| 0.3432        | 0.6   | 40   | 0.3379          |
| 0.3227        | 0.9   | 60   | 0.3375          |
| 0.3315        | 1.18  | 80   | 0.3373          |
| 0.3204        | 1.48  | 100  | 0.3315          |
| 0.3291        | 1.79  | 120  | 0.3300          |
| 0.319         | 2.07  | 140  | 0.3277          |
| 0.3165        | 2.37  | 160  | 0.3280          |
| 0.3133        | 2.67  | 180  | 0.3388          |
| 0.3088        | 2.97  | 200  | 0.3263          |
| 0.3448        | 3.25  | 220  | 0.3252          |
| 0.3264        | 3.55  | 240  | 0.3273          |
| 0.2946        | 3.85  | 260  | 0.3310          |
| 0.3212        | 4.13  | 280  | 0.3244          |
| 0.3118        | 4.43  | 300  | 0.3245          |
| 0.3377        | 4.73  | 320  | 0.3248          |


### Framework versions

- PEFT 0.9.0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0

## Evaluation results

| Model                   | Accuracy | Avg Time | Avg Cost            |
|-------------------------|----------|----------|---------------------|
| gpt-4                   | 0.874    | 0.624    | 0.00552             |
| gpt-3.5-turbo           | 0.824    | 0.530    | 0.0000916           |
| llama2-7b-ft-boolq-run2 | 0.856    | 0.0432   | 0.0000155           |

### ft vs gpt4

- Cost Improvement: 357x
- Latency Improvement: 12x

### ft vs gpt3.5-turbo

- Cost Improvement: 6x
- Latency Improvement: 14x