--- license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 tags: - trl - sft - generated_from_trainer model-index: - name: TinyLlama_instruct_generation results: [] --- # TinyLlama_instruct_generation This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the generator dataset. ## Model description This model has been fine tuned with mosaicml/instruct-v3 dataset with 2 epoch only. Mainly this model is useful for RAG based application ## How to use? from peft import PeftModel # load the base model model_path = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" tokenizer=AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype = torch.bfloat16, device_map = "auto", trust_remote_code = True ) #load the adapter model_peft = PeftModel.from_pretrained(model, "azam25/TinyLlama_instruct_generation") messages = [{ "role": "user", "content": "Act as a gourmet chef. I have a friend coming over who is a vegetarian. \ I want to impress my friend with a special vegetarian dish. \ What do you recommend? \ Give me two options, along with the whole recipe for each" }] def generate_response(message, model): prompt = tokenizer.apply_chat_template(messages, tokenize=False) encoded_input = tokenizer(prompt, return_tensors="pt", add_special_tokens=True) model_inputs = encoded_input.to('cuda') generated_ids = model.generate(**model_inputs, max_new_tokens=1000, do_sample=True, pad_token_id=tokenizer.eos_token_id) decoded_output = tokenizer.batch_decode(generated_ids) return decoded_output[0] response = generate_response(messages, model) print(response) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 0.03 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6386 | 1.0 | 25 | 1.4451 | | 1.5234 | 2.0 | 50 | 1.3735 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0