File size: 2,428 Bytes
0713ec0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35bb77e
0713ec0
35bb77e
0713ec0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805ffcd
a0e64b1
4f48fb5
 
62b7ef2
a9be676
7694303
d2fc295
4d7649b
c553733
0cef868
1b68a10
dac35d5
a67468a
bc3a79c
d61a2c4
 
de1a99b
35bb77e
0713ec0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: cc-by-4.0
base_model: deepset/minilm-uncased-squad2
tags:
- generated_from_keras_callback
model-index:
- name: badokorach/minilm-uncased-finetuned-agic2-051223
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# badokorach/minilm-uncased-finetuned-agic2-051223

This model is a fine-tuned version of [deepset/minilm-uncased-squad2](https://huggingface.co/deepset/minilm-uncased-squad2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6997
- Validation Loss: 0.0
- Epoch: 19

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 1300, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.02}
- training_precision: mixed_float16

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.3883     | 0.0             | 0     |
| 1.9254     | 0.0             | 1     |
| 1.7108     | 0.0             | 2     |
| 1.5497     | 0.0             | 3     |
| 1.4126     | 0.0             | 4     |
| 1.2711     | 0.0             | 5     |
| 1.1776     | 0.0             | 6     |
| 1.0960     | 0.0             | 7     |
| 1.0484     | 0.0             | 8     |
| 0.9780     | 0.0             | 9     |
| 0.9238     | 0.0             | 10    |
| 0.8748     | 0.0             | 11    |
| 0.8300     | 0.0             | 12    |
| 0.8056     | 0.0             | 13    |
| 0.7757     | 0.0             | 14    |
| 0.7537     | 0.0             | 15    |
| 0.7272     | 0.0             | 16    |
| 0.7454     | 0.0             | 17    |
| 0.6981     | 0.0             | 18    |
| 0.6997     | 0.0             | 19    |


### Framework versions

- Transformers 4.35.2
- TensorFlow 2.14.0
- Datasets 2.15.0
- Tokenizers 0.15.0