File size: 2,465 Bytes
28f8082 7849e07 28f8082 7849e07 28f8082 e67fc9a 28f8082 e67fc9a 28f8082 9786ba9 28f8082 7849e07 b62b859 b1132fb f9b2c27 2aa1c25 6e6b71b 0d40a8e 455344f 2071df8 6b285a9 02cbc37 1a88a33 83de8fa 700f9c6 e67fc9a 28f8082 5d58d47 1b1ffe1 28f8082 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: cc-by-4.0
base_model: deepset/minilm-uncased-squad2
tags:
- generated_from_keras_callback
model-index:
- name: badokorach/minilm-uncased-squad2-agric-041223
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# badokorach/minilm-uncased-squad2-agric-041223
This model is a fine-tuned version of [deepset/minilm-uncased-squad2](https://huggingface.co/deepset/minilm-uncased-squad2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.9972
- Validation Loss: 0.0
- Epoch: 14
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 1380, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.5655 | 0.0 | 0 |
| 2.0739 | 0.0 | 1 |
| 1.8572 | 0.0 | 2 |
| 1.6760 | 0.0 | 3 |
| 1.5234 | 0.0 | 4 |
| 1.3978 | 0.0 | 5 |
| 1.3269 | 0.0 | 6 |
| 1.2199 | 0.0 | 7 |
| 1.1821 | 0.0 | 8 |
| 1.1377 | 0.0 | 9 |
| 1.0846 | 0.0 | 10 |
| 1.0607 | 0.0 | 11 |
| 1.0123 | 0.0 | 12 |
| 1.0112 | 0.0 | 13 |
| 0.9972 | 0.0 | 14 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.0
|