File size: 3,653 Bytes
3a88f0e 56b9005 3a88f0e 56b9005 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
license: cc-by-nc-4.0
base_model: utter-project/mHuBERT-147
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: mHuBERT-147upper-sorbian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: hsb
split: validation
args: hsb
metrics:
- name: Wer
type: wer
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/badr-nlp/xlsr-continual-finetuning-new/runs/nkb11lep)
# mHuBERT-147upper-sorbian
This model is a fine-tuned version of [utter-project/mHuBERT-147](https://huggingface.co/utter-project/mHuBERT-147) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2170
- Wer: 1.0
- Cer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-------:|:----:|:---------------:|:---:|:---:|
| 7.2839 | 3.9216 | 100 | 7.4925 | 1.0 | 1.0 |
| 3.4632 | 7.8431 | 200 | 3.4671 | 1.0 | 1.0 |
| 3.181 | 11.7647 | 300 | 3.2306 | 1.0 | 1.0 |
| 3.2284 | 15.6863 | 400 | 3.2231 | 1.0 | 1.0 |
| 3.2113 | 19.6078 | 500 | 3.2243 | 1.0 | 1.0 |
| 3.1844 | 23.5294 | 600 | 3.2183 | 1.0 | 1.0 |
| 3.2644 | 27.4510 | 700 | 3.2180 | 1.0 | 1.0 |
| 3.2111 | 31.3725 | 800 | 3.2191 | 1.0 | 1.0 |
| 3.187 | 35.2941 | 900 | 3.2189 | 1.0 | 1.0 |
| 3.2133 | 39.2157 | 1000 | 3.2203 | 1.0 | 1.0 |
| 3.2406 | 43.1373 | 1100 | 3.2181 | 1.0 | 1.0 |
| 3.1993 | 47.0588 | 1200 | 3.2178 | 1.0 | 1.0 |
| 3.2036 | 50.9804 | 1300 | 3.2169 | 1.0 | 1.0 |
| 3.2283 | 54.9020 | 1400 | 3.2171 | 1.0 | 1.0 |
| 3.1854 | 58.8235 | 1500 | 3.2198 | 1.0 | 1.0 |
| 3.184 | 62.7451 | 1600 | 3.2182 | 1.0 | 1.0 |
| 3.2253 | 66.6667 | 1700 | 3.2194 | 1.0 | 1.0 |
| 3.1943 | 70.5882 | 1800 | 3.2194 | 1.0 | 1.0 |
| 3.201 | 74.5098 | 1900 | 3.2167 | 1.0 | 1.0 |
| 3.2178 | 78.4314 | 2000 | 3.2180 | 1.0 | 1.0 |
| 3.2252 | 82.3529 | 2100 | 3.2172 | 1.0 | 1.0 |
| 3.2081 | 86.2745 | 2200 | 3.2170 | 1.0 | 1.0 |
| 3.2125 | 90.1961 | 2300 | 3.2170 | 1.0 | 1.0 |
| 3.23 | 94.1176 | 2400 | 3.2170 | 1.0 | 1.0 |
| 3.1851 | 98.0392 | 2500 | 3.2170 | 1.0 | 1.0 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|