File size: 2,977 Bytes
7f70a60 433863d 7f70a60 433863d 7f70a60 97b3f32 7f70a60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: apache-2.0
tags:
- whisper-event
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
- google/fleurs
metrics:
- wer
model-index:
- name: whisper-medium-mn-4-bayartsogt
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: mn
split: test
args:
language: mn
metrics:
- name: Wer
type: wer
value: 33.029276818876994
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-medium-mn-4
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6015
- Wer: 33.0293
- Cer: 10.9236
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 15000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 0.0362 | 4.26 | 1000 | 0.4204 | 40.2720 | 13.8389 |
| 0.0087 | 8.51 | 2000 | 0.4712 | 37.4918 | 12.9175 |
| 0.0044 | 12.77 | 3000 | 0.4893 | 36.3393 | 12.4727 |
| 0.0033 | 17.02 | 4000 | 0.5159 | 35.8423 | 12.2933 |
| 0.0017 | 21.28 | 5000 | 0.5183 | 35.2797 | 12.1104 |
| 0.0016 | 25.53 | 6000 | 0.5422 | 35.4326 | 11.7454 |
| 0.0011 | 29.79 | 7000 | 0.5361 | 34.5314 | 11.5196 |
| 0.0004 | 34.04 | 8000 | 0.5406 | 34.0998 | 11.3650 |
| 0.0006 | 38.3 | 9000 | 0.5540 | 33.8650 | 11.2912 |
| 0.0002 | 42.55 | 10000 | 0.5748 | 34.0889 | 11.5333 |
| 0.0003 | 46.81 | 11000 | 0.5771 | 34.5641 | 11.4895 |
| 0.0 | 51.06 | 12000 | 0.5809 | 33.4335 | 11.2070 |
| 0.0 | 55.32 | 13000 | 0.5941 | 33.2095 | 11.0009 |
| 0.0 | 59.57 | 14000 | 0.6015 | 33.0293 | 10.9236 |
| 0.0 | 63.83 | 15000 | 0.6045 | 33.0347 | 10.9125 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|