--- license: apache-2.0 tags: - whisper-event - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs metrics: - wer model-index: - name: whisper-medium-mn-4-bayartsogt results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: mn split: test args: language: mn metrics: - name: Wer type: wer value: 33.029276818876994 --- # whisper-medium-mn-4 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6015 - Wer: 33.0293 - Cer: 10.9236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 15000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.0362 | 4.26 | 1000 | 0.4204 | 40.2720 | 13.8389 | | 0.0087 | 8.51 | 2000 | 0.4712 | 37.4918 | 12.9175 | | 0.0044 | 12.77 | 3000 | 0.4893 | 36.3393 | 12.4727 | | 0.0033 | 17.02 | 4000 | 0.5159 | 35.8423 | 12.2933 | | 0.0017 | 21.28 | 5000 | 0.5183 | 35.2797 | 12.1104 | | 0.0016 | 25.53 | 6000 | 0.5422 | 35.4326 | 11.7454 | | 0.0011 | 29.79 | 7000 | 0.5361 | 34.5314 | 11.5196 | | 0.0004 | 34.04 | 8000 | 0.5406 | 34.0998 | 11.3650 | | 0.0006 | 38.3 | 9000 | 0.5540 | 33.8650 | 11.2912 | | 0.0002 | 42.55 | 10000 | 0.5748 | 34.0889 | 11.5333 | | 0.0003 | 46.81 | 11000 | 0.5771 | 34.5641 | 11.4895 | | 0.0 | 51.06 | 12000 | 0.5809 | 33.4335 | 11.2070 | | 0.0 | 55.32 | 13000 | 0.5941 | 33.2095 | 11.0009 | | 0.0 | 59.57 | 14000 | 0.6015 | 33.0293 | 10.9236 | | 0.0 | 63.83 | 15000 | 0.6045 | 33.0347 | 10.9125 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2