--- license: apache-2.0 tags: - whisper-event - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs metrics: - wer model-index: - name: whisper-small-mn-2-bayartsogt results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: mn split: test args: language: mn metrics: - name: Wer type: wer value: 40.87830456630981 --- # whisper-small-mn-2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7259 - Wer: 40.8783 - Cer: 13.9617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 15000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.0839 | 4.26 | 1000 | 0.4647 | 45.7286 | 16.0020 | | 0.0093 | 8.51 | 2000 | 0.5434 | 43.9753 | 15.2446 | | 0.0044 | 12.77 | 3000 | 0.6009 | 43.6257 | 15.1717 | | 0.0029 | 17.02 | 4000 | 0.6166 | 43.0031 | 14.7578 | | 0.002 | 21.28 | 5000 | 0.6390 | 42.6098 | 14.7286 | | 0.001 | 25.53 | 6000 | 0.6558 | 41.7468 | 14.3516 | | 0.0021 | 29.79 | 7000 | 0.6714 | 42.3039 | 14.4589 | | 0.0003 | 34.04 | 8000 | 0.6791 | 41.0586 | 13.9506 | | 0.0001 | 38.3 | 9000 | 0.6949 | 41.3808 | 14.1670 | | 0.0013 | 42.55 | 10000 | 0.6875 | 41.4682 | 14.2983 | | 0.0001 | 46.81 | 11000 | 0.6937 | 40.9165 | 13.9549 | | 0.0001 | 51.06 | 12000 | 0.7092 | 40.9275 | 13.9549 | | 0.0 | 55.32 | 13000 | 0.7190 | 40.9657 | 13.9703 | | 0.0 | 59.57 | 14000 | 0.7259 | 40.8783 | 13.9617 | | 0.0 | 63.83 | 15000 | 0.7292 | 40.8838 | 13.9274 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2