bayesianist commited on
Commit
72ddc63
·
1 Parent(s): 7eeff3b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -10
README.md CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.3799
20
- - Accuracy: 0.8286
21
 
22
  ## Model description
23
 
@@ -37,27 +37,27 @@ More information needed
37
 
38
  The following hyperparameters were used during training:
39
  - learning_rate: 5e-05
40
- - train_batch_size: 2
41
- - eval_batch_size: 2
42
  - seed: 42
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
45
  - lr_scheduler_warmup_ratio: 0.1
46
- - training_steps: 600
47
 
48
  ### Training results
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
- | 1.5803 | 0.25 | 150 | 1.3426 | 0.5143 |
53
- | 0.4075 | 1.25 | 300 | 0.5186 | 0.7571 |
54
- | 0.2451 | 2.25 | 450 | 0.2852 | 0.8857 |
55
- | 0.0262 | 3.25 | 600 | 0.3799 | 0.8286 |
56
 
57
 
58
  ### Framework versions
59
 
60
  - Transformers 4.26.1
61
  - Pytorch 1.13.1+cu116
62
- - Datasets 2.10.0
63
  - Tokenizers 0.13.2
 
16
 
17
  This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.3555
20
+ - Accuracy: 0.8571
21
 
22
  ## Model description
23
 
 
37
 
38
  The following hyperparameters were used during training:
39
  - learning_rate: 5e-05
40
+ - train_batch_size: 6
41
+ - eval_batch_size: 6
42
  - seed: 42
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
45
  - lr_scheduler_warmup_ratio: 0.1
46
+ - training_steps: 200
47
 
48
  ### Training results
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 1.8929 | 0.25 | 50 | 1.7471 | 0.5286 |
53
+ | 0.7568 | 1.25 | 100 | 0.6984 | 0.7571 |
54
+ | 0.2939 | 2.25 | 150 | 0.4271 | 0.8429 |
55
+ | 0.243 | 3.25 | 200 | 0.3555 | 0.8571 |
56
 
57
 
58
  ### Framework versions
59
 
60
  - Transformers 4.26.1
61
  - Pytorch 1.13.1+cu116
62
+ - Datasets 2.10.1
63
  - Tokenizers 0.13.2