bayesianist
commited on
Commit
·
72ddc63
1
Parent(s):
7eeff3b
update model card README.md
Browse files
README.md
CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
-
- Accuracy: 0.
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -37,27 +37,27 @@ More information needed
|
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
- learning_rate: 5e-05
|
40 |
-
- train_batch_size:
|
41 |
-
- eval_batch_size:
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
- lr_scheduler_warmup_ratio: 0.1
|
46 |
-
- training_steps:
|
47 |
|
48 |
### Training results
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
-
| 1.
|
53 |
-
| 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
|
57 |
|
58 |
### Framework versions
|
59 |
|
60 |
- Transformers 4.26.1
|
61 |
- Pytorch 1.13.1+cu116
|
62 |
-
- Datasets 2.10.
|
63 |
- Tokenizers 0.13.2
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.3555
|
20 |
+
- Accuracy: 0.8571
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
- learning_rate: 5e-05
|
40 |
+
- train_batch_size: 6
|
41 |
+
- eval_batch_size: 6
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
- lr_scheduler_warmup_ratio: 0.1
|
46 |
+
- training_steps: 200
|
47 |
|
48 |
### Training results
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| 1.8929 | 0.25 | 50 | 1.7471 | 0.5286 |
|
53 |
+
| 0.7568 | 1.25 | 100 | 0.6984 | 0.7571 |
|
54 |
+
| 0.2939 | 2.25 | 150 | 0.4271 | 0.8429 |
|
55 |
+
| 0.243 | 3.25 | 200 | 0.3555 | 0.8571 |
|
56 |
|
57 |
|
58 |
### Framework versions
|
59 |
|
60 |
- Transformers 4.26.1
|
61 |
- Pytorch 1.13.1+cu116
|
62 |
+
- Datasets 2.10.1
|
63 |
- Tokenizers 0.13.2
|