File size: 13,255 Bytes
5874d06 b5cab9b b297db8 0ceedac b297db8 71e73b5 b297db8 71e73b5 b297db8 71e73b5 b297db8 71e73b5 b297db8 71e73b5 b297db8 71e73b5 b297db8 71e73b5 b297db8 71e73b5 b297db8 71e73b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
---
license: apache-2.0
datasets:
- Lin-Chen/ShareGPT4V
- liuhaotian/LLaVA-Pretrain
- liuhaotian/LLaVA-Instruct-150K
language:
- en
- zh
tags:
- llava
- vision-language
- llm
- lmm
---
<h2 align="center"> <a href="https://arxiv.org/abs/2402.14289">TinyLLaVA: A Framework of Small-scale Large Multimodal Models</a>
<h5 align="center">
[![github](https://img.shields.io/badge/GitHub-TinyLLaVA-blue)](https://github.com/DLCV-BUAA/TinyLLaVABench) [![arXiv](https://img.shields.io/badge/Arxiv-2402.14289-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2402.14289) [![License](https://img.shields.io/badge/License-Apache%202.0-yellow)](https://github.com/PKU-YuanGroup/MoE-LLaVA/blob/main/LICENSE)
## 🎉 News
* **[2024.03.10]** base recipe out!
* **[2024.03.10]** Finetune scripts out!
* **[2024.02.25]** Update evaluation scripts and docs!
* **[2024.02.25]** Data descriptions out. Release TinyLLaVA-1.5B and TinyLLaVA-2.0B!
* **[2024.02.24]** Example code on inference and model loading added!
* **[2024.02.23]** Evaluation code and scripts released!
* **[2024.02.21]** Creating the [TinyLLaVABench](https://github.com/DLCV-BUAA/TinyLLavaBench) repository on GitHub!
* **[2024.02.21]** Our paper: [TinyLLaVA: A Framework of Small-scale Large Multimodal Models](https://arxiv.org/abs/2402.14289) is out!
* **[2024.01.11]** Our fist model [TinyLLaVA-1.4B](https://huggingface.co/bczhou/tiny-llava-v1-hf) is out!
## ⌛ TODO
- [ ] Add support for Ollama and llama.cpp.
- [x] Developers' guide / How to build demo locally.
- [x] Training and custom finetuning docs.
- [x] Model Zoo descriptions.
- [x] Examples and inference.
- [x] Release code for training.
- [x] Add descriptions for evaluation.
- [x] Add descriptions for data preparation.
- [x] Release TinyLLaVA-1.5B and TinyLLaVA-2.0B.
- [x] Release TinyLLaVA-3.1B.
- [x] Release the evaluation code and weights today(2024.2.23).
### 🔥 High performance, but with fewer parameters
- Our best model, TinyLLaVA-3.1B, achieves better overall performance against existing 7B models such as LLaVA-1.5 and Qwen-VL.
## Contents
- [Install](#x1f527-requirements-and-installation)
- [Model Zoo](#x1f433-model-zoo)
- [Demo](#Demo)
- [Quick Start](#x1f527-quick-start)
- [Run Inference](#x1f527-run-inference)
- [Evaluation](#evaluation)
- [Data](#data-preparation)
- [Train](#train)
- [Custom Finetune](#custom-finetune)
## 🔧 Requirements and Installation
We recommend the requirements as follows.
1. Clone this repository and navigate to LLaVA folder
```bash
git clone https://github.com/DLCV-BUAA/TinyLLaVABench.git
cd TinyLLaVABench
```
2. Install Package
```Shell
conda create -n tinyllava python=3.10 -y
conda activate tinyllava
pip install --upgrade pip # enable PEP 660 support
pip install -e .
```
3. Install additional packages for training cases
```Shell
pip install -e ".[train]"
pip install flash-attn --no-build-isolation
```
### Upgrade to the latest code base
```Shell
git pull
pip install -e .
# if you see some import errors when you upgrade, please try running the command below (without #)
# pip install flash-attn --no-build-isolation --no-cache-dir
```
## 🐳 Model Zoo
### Legacy Model
- [tiny-llava-hf](https://huggingface.co/bczhou/tiny-llava-v1-hf)
### Pretrained Models
- [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B)
- [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B)
- [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B)
### Model Details
| Name | LLM | Checkpoint | LLaVA-Bench-Wild | MME | MMBench | MM-Vet | SQA-image | VQA-v2 | GQA | TextVQA |
|---------------|-------------------|------------------------------------------------|------------------|----------|---------|--------|-----------|--------|-------|---------|
| TinyLLaVA-3.1B | Phi-2 | [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 75.8 | 1464.9 | 66.9 | 32.0 | 69.1 | 79.9 | 62.0 | 59.1 |
| TinyLLaVA-2.0B | StableLM-2-1.6B | [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B) | 66.4 | 1433.8 | 63.3 | 32.6 | 64.7 | 78.9 | 61.9 | 56.4 |
| TinyLLaVA-1.5B | TinyLlama | [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B) | 60.8 | 1276.5 | 55.2 | 25.8 | 60.3 | 76.9 | 60.3 | 51.7 |
## Demo
### Gradio Web Demo
Launch a local web demo by running:
```shell
python tinyllava/serve/app.py --model-path bczhou/TinyLLaVA-3.1B --model-name TinyLLaVA-3.1B
```
### CLI Inference
We also support running inference with CLI. To use our model, run:
```shell
python -m tinyllava.serve.cli \
--model-path bczhou/TinyLLaVA-3.1B \
--image-file "./tinyllava/serve/examples/extreme_ironing.jpg"
```
## 🔧 Quick Start
<details>
<summary>Load model</summary>
```Python
from tinyllava.model.builder import load_pretrained_model
from tinyllava.mm_utils import get_model_name_from_path
from tinyllava.eval.run_tiny_llava import eval_model
model_path = "bczhou/TinyLLaVA-3.1B"
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path=model_path,
model_base=None,
model_name=get_model_name_from_path(model_path)
)
```
</details>
## 🔧 Run Inference
Here's an example of running inference with [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B)
<details>
<summary>Run Inference</summary>
```Python
from tinyllava.model.builder import load_pretrained_model
from tinyllava.mm_utils import get_model_name_from_path
from tinyllava.eval.run_tiny_llava import eval_model
model_path = "bczhou/TinyLLaVA-3.1B"
prompt = "What are the things I should be cautious about when I visit here?"
image_file = "https://llava-vl.github.io/static/images/view.jpg"
args = type('Args', (), {
"model_path": model_path,
"model_base": None,
"model_name": get_model_name_from_path(model_path),
"query": prompt,
"conv_mode": "phi",
"image_file": image_file,
"sep": ",",
"temperature": 0,
"top_p": None,
"num_beams": 1,
"max_new_tokens": 512
})()
eval_model(args)
```
</details>
### Important
We use different `conv_mode` for different models. Replace the `conv_mode` in `args` according to this table:
| model | conv_mode |
|---------------- |----------- |
| TinyLLaVA-3.1B | phi |
| TinyLLaVA-2.0B | phi |
| TinyLLaVA-1.5B | v1 |
## Evaluation
To ensure the reproducibility, we evaluate the models with greedy decoding.
See [Evaluation.md](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/docs/Evaluation.md)
## Data Preparation
In our paper, we used two different datasets: the [LLaVA dataset](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#pretrain-feature-alignment) and the [ShareGPT4V dataset](https://github.com/InternLM/InternLM-XComposer/blob/main/projects/ShareGPT4V/docs/Data.md), and compared their differences. In this section, we provide information on data preparation.
### Pretraining Images
* LLaVA: The pretraining images of LLaVA is from the 558K subset of the LAION-CC-SBU dataset.
* ShareGPT4V: The pretraining images of ShareGPT4V is a mixture of 558K LAION-CC-SBU subset, SAM dataset, and COCO dataset.
### Pretraining Annotations
* LLaVA: The pretraining annotations of LLaVA are [here](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain).
* ShareGPT4V: The pretraining annotations of ShareGPT4V are [here](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/share-captioner_coco_lcs_sam_1246k_1107.json).
### SFT Images & Annotations
The majority of the two SFT datasets are the same, with the exception that the 23K detailed description data in LLaVA-1.5-SFT being replaced with detailed captions randomly sampled from the [100K ShareGPT4V data](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_instruct_gpt4-vision_cap100k.json).
### Download data
1. Download relevant images
- LAION-CC-SBU-558K: [images.zip](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain/blob/main/images.zip)
- COCO: This dataset is from the [COCO2017 challenge](https://cocodataset.org/). Download: [train2017](http://images.cocodataset.org/zips/train2017.zip)
- WebData: This dataset is curated by the [ShareGPT4V project](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V). Download: [images](https://drive.google.com/drive/folders/1tCUQ-sq6vdshZVkF0ZeF3K4eztkXJgax?usp=sharing). Only for academic usage.
- SAM: This dataset is collected by [Meta](https://ai.meta.com/datasets/segment-anything-downloads/). Download: [images](https://ai.meta.com/datasets/segment-anything-downloads/). We only use 000000~000050.tar for now. If you just want to use ShareGPT4V for SFT, you can quickly download 9K images from [here](https://drive.google.com/file/d/1dKumdOKSXtV7lIXdrG7jsIK_z2vZv2gs/view?usp=drive_link).
- GQA: [GQA project page](https://cs.stanford.edu/people/dorarad/gqa/about.html). Download: [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip)
- OCR-VQA: [OCR-VQA project page](https://ocr-vqa.github.io/). Download: [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing). We save all files as `.jpg`
- TextVQA: [TextVQA project page](https://textvqa.org/). Download: [trainvalimages](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip)
- VisualGenome: [VisualGenome project page](https://homes.cs.washington.edu/~ranjay/visualgenome/index.html). Download: [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip)
2. Download relevant annotations
- LLaVA's pretraining annotations: [blip_laion_cc_sbu_558k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain)
- LLaVA's SFT annotations: [llava_v1_5_mix665k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json)
- ShareGPT4V's pretraining annotations: [share-captioner_coco_lcs_sam_1246k_1107.json](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/share-captioner_coco_lcs_sam_1246k_1107.json)
- ShareGPT4V's SFT annotations: [sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json)
### Organize Data
Organize the image files and annotation files as follows in `path/to/your/data`:
```none
data
βββ llava
β βββ llava_pretrain
β β βββ images
β β βββ blip_laion_cc_sbu_558k.json
βββ coco
β βββ train2017
βββ sam
β βββ images
βββ gqa
β βββ images
βββ ocr_vqa
β βββ images
βββ textvqa
β βββ train_images
βββ vg
β βββ VG_100K
β βββ VG_100K_2
βββ share_textvqa
β βββ images
βββ web-celebrity
β βββ images
βββ web-landmark
β βββ images
βββ wikiart
β βββ images
βββ text_files
β βββ llava_v1_5_mix665k.json
β βββ share-captioner_coco_lcs_sam_1246k_1107.json
β βββ sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json
```
## Train
**This section we describe the base recipe.**
### Hyperparameters
Both hyperparameters used in pretraining and finetuning are provided below.
1. Pretraining
| Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
|----------------| ---: | ---: | ---: |-----------:| ---: |
| TinyLLaVA-3.1B | 256 | 1e-3 | 1 | 3072 | 0 |
2. Finetuning
| Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
|----------------| ---: | ---: | ---: |-----------:| ---: |
| TinyLLaVA-3.1B | 128 | 2e-5 | 1 | 3072 | 0 |
### Pretrain
**Replace paths to your paths**
Training script with DeepSpeed ZeRO-2: [`pretrain.sh`](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/scripts/tiny_llava/pretrain.sh).
### Finetune
**Replace paths to your paths**
Training script with DeepSpeed ZeRO-3: [`finetune.sh`](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/scripts/tiny_llava/finetune.sh).
## Custom-Finetune
Check out our custom finetune using LoRA [here](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/dev/docs/CUTOM_FINETUNE.md).
## ✏ Citation
If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:.
```BibTeX
@misc{zhou2024tinyllava,
title={TinyLLaVA: A Framework of Small-scale Large Multimodal Models},
author={Baichuan Zhou and Ying Hu and Xi Weng and Junlong Jia and Jie Luo and Xien Liu and Ji Wu and Lei Huang},
year={2024},
eprint={2402.14289},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
## β€οΈ Community efforts
* Our codebase is built upon the [LLaVA](https://github.com/haotian-liu/LLaVA) project. Great work!
* Our project uses data from the [ShareGPT4V](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V) project. Great work!
|