--- license: apache-2.0 datasets: - Lin-Chen/ShareGPT4V - liuhaotian/LLaVA-Pretrain - liuhaotian/LLaVA-Instruct-150K language: - en - zh tags: - llava - vision-language - llm - lmm ---

TinyLLaVA: A Framework of Small-scale Large Multimodal Models

[![github](https://img.shields.io/badge/GitHub-TinyLLaVA-blue)](https://github.com/DLCV-BUAA/TinyLLaVABench) [![arXiv](https://img.shields.io/badge/Arxiv-2402.14289-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2402.14289) [![License](https://img.shields.io/badge/License-Apache%202.0-yellow)](https://github.com/PKU-YuanGroup/MoE-LLaVA/blob/main/LICENSE) ## 🎉 News * **[2024.03.10]** base recipe out! * **[2024.03.10]** Finetune scripts out! * **[2024.02.25]** Update evaluation scripts and docs! * **[2024.02.25]** Data descriptions out. Release TinyLLaVA-1.5B and TinyLLaVA-2.0B! * **[2024.02.24]** Example code on inference and model loading added! * **[2024.02.23]** Evaluation code and scripts released! * **[2024.02.21]** Creating the [TinyLLaVABench](https://github.com/DLCV-BUAA/TinyLLavaBench) repository on GitHub! * **[2024.02.21]** Our paper: [TinyLLaVA: A Framework of Small-scale Large Multimodal Models](https://arxiv.org/abs/2402.14289) is out! * **[2024.01.11]** Our fist model [TinyLLaVA-1.4B](https://huggingface.co/bczhou/tiny-llava-v1-hf) is out! ## ⌛ TODO - [ ] Add support for Ollama and llama.cpp. - [x] Developers' guide / How to build demo locally. - [x] Training and custom finetuning docs. - [x] Model Zoo descriptions. - [x] Examples and inference. - [x] Release code for training. - [x] Add descriptions for evaluation. - [x] Add descriptions for data preparation. - [x] Release TinyLLaVA-1.5B and TinyLLaVA-2.0B. - [x] Release TinyLLaVA-3.1B. - [x] Release the evaluation code and weights today(2024.2.23). ### 🔥 High performance, but with fewer parameters - Our best model, TinyLLaVA-3.1B, achieves better overall performance against existing 7B models such as LLaVA-1.5 and Qwen-VL. ## Contents - [Install](#x1f527-requirements-and-installation) - [Model Zoo](#x1f433-model-zoo) - [Demo](#Demo) - [Quick Start](#x1f527-quick-start) - [Run Inference](#x1f527-run-inference) - [Evaluation](#evaluation) - [Data](#data-preparation) - [Train](#train) - [Custom Finetune](#custom-finetune) ## 🔧 Requirements and Installation We recommend the requirements as follows. 1. Clone this repository and navigate to LLaVA folder ```bash git clone https://github.com/DLCV-BUAA/TinyLLaVABench.git cd TinyLLaVABench ``` 2. Install Package ```Shell conda create -n tinyllava python=3.10 -y conda activate tinyllava pip install --upgrade pip # enable PEP 660 support pip install -e . ``` 3. Install additional packages for training cases ```Shell pip install -e ".[train]" pip install flash-attn --no-build-isolation ``` ### Upgrade to the latest code base ```Shell git pull pip install -e . # if you see some import errors when you upgrade, please try running the command below (without #) # pip install flash-attn --no-build-isolation --no-cache-dir ``` ## 🐳 Model Zoo ### Legacy Model - [tiny-llava-hf](https://huggingface.co/bczhou/tiny-llava-v1-hf) ### Pretrained Models - [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) - [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B) - [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B) ### Model Details | Name | LLM | Checkpoint | LLaVA-Bench-Wild | MME | MMBench | MM-Vet | SQA-image | VQA-v2 | GQA | TextVQA | |---------------|-------------------|------------------------------------------------|------------------|----------|---------|--------|-----------|--------|-------|---------| | TinyLLaVA-3.1B | Phi-2 | [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 75.8 | 1464.9 | 66.9 | 32.0 | 69.1 | 79.9 | 62.0 | 59.1 | | TinyLLaVA-2.0B | StableLM-2-1.6B | [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B) | 66.4 | 1433.8 | 63.3 | 32.6 | 64.7 | 78.9 | 61.9 | 56.4 | | TinyLLaVA-1.5B | TinyLlama | [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B) | 60.8 | 1276.5 | 55.2 | 25.8 | 60.3 | 76.9 | 60.3 | 51.7 | ## Demo ### Gradio Web Demo Launch a local web demo by running: ```shell python tinyllava/serve/app.py --model-path bczhou/TinyLLaVA-3.1B --model-name TinyLLaVA-3.1B ``` ### CLI Inference We also support running inference with CLI. To use our model, run: ```shell python -m tinyllava.serve.cli \ --model-path bczhou/TinyLLaVA-3.1B \ --image-file "./tinyllava/serve/examples/extreme_ironing.jpg" ``` ## 🔧 Quick Start
Load model ```Python from tinyllava.model.builder import load_pretrained_model from tinyllava.mm_utils import get_model_name_from_path from tinyllava.eval.run_tiny_llava import eval_model model_path = "bczhou/TinyLLaVA-3.1B" tokenizer, model, image_processor, context_len = load_pretrained_model( model_path=model_path, model_base=None, model_name=get_model_name_from_path(model_path) ) ```
## 🔧 Run Inference Here's an example of running inference with [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B)
Run Inference ```Python from tinyllava.model.builder import load_pretrained_model from tinyllava.mm_utils import get_model_name_from_path from tinyllava.eval.run_tiny_llava import eval_model model_path = "bczhou/TinyLLaVA-3.1B" prompt = "What are the things I should be cautious about when I visit here?" image_file = "https://llava-vl.github.io/static/images/view.jpg" args = type('Args', (), { "model_path": model_path, "model_base": None, "model_name": get_model_name_from_path(model_path), "query": prompt, "conv_mode": "phi", "image_file": image_file, "sep": ",", "temperature": 0, "top_p": None, "num_beams": 1, "max_new_tokens": 512 })() eval_model(args) ```
### Important We use different `conv_mode` for different models. Replace the `conv_mode` in `args` according to this table: | model | conv_mode | |---------------- |----------- | | TinyLLaVA-3.1B | phi | | TinyLLaVA-2.0B | phi | | TinyLLaVA-1.5B | v1 | ## Evaluation To ensure the reproducibility, we evaluate the models with greedy decoding. See [Evaluation.md](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/docs/Evaluation.md) ## Data Preparation In our paper, we used two different datasets: the [LLaVA dataset](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#pretrain-feature-alignment) and the [ShareGPT4V dataset](https://github.com/InternLM/InternLM-XComposer/blob/main/projects/ShareGPT4V/docs/Data.md), and compared their differences. In this section, we provide information on data preparation. ### Pretraining Images * LLaVA: The pretraining images of LLaVA is from the 558K subset of the LAION-CC-SBU dataset. * ShareGPT4V: The pretraining images of ShareGPT4V is a mixture of 558K LAION-CC-SBU subset, SAM dataset, and COCO dataset. ### Pretraining Annotations * LLaVA: The pretraining annotations of LLaVA are [here](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain). * ShareGPT4V: The pretraining annotations of ShareGPT4V are [here](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/share-captioner_coco_lcs_sam_1246k_1107.json). ### SFT Images & Annotations The majority of the two SFT datasets are the same, with the exception that the 23K detailed description data in LLaVA-1.5-SFT being replaced with detailed captions randomly sampled from the [100K ShareGPT4V data](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_instruct_gpt4-vision_cap100k.json). ### Download data 1. Download relevant images - LAION-CC-SBU-558K: [images.zip](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain/blob/main/images.zip) - COCO: This dataset is from the [COCO2017 challenge](https://cocodataset.org/). Download: [train2017](http://images.cocodataset.org/zips/train2017.zip) - WebData: This dataset is curated by the [ShareGPT4V project](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V). Download: [images](https://drive.google.com/drive/folders/1tCUQ-sq6vdshZVkF0ZeF3K4eztkXJgax?usp=sharing). Only for academic usage. - SAM: This dataset is collected by [Meta](https://ai.meta.com/datasets/segment-anything-downloads/). Download: [images](https://ai.meta.com/datasets/segment-anything-downloads/). We only use 000000~000050.tar for now. If you just want to use ShareGPT4V for SFT, you can quickly download 9K images from [here](https://drive.google.com/file/d/1dKumdOKSXtV7lIXdrG7jsIK_z2vZv2gs/view?usp=drive_link). - GQA: [GQA project page](https://cs.stanford.edu/people/dorarad/gqa/about.html). Download: [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip) - OCR-VQA: [OCR-VQA project page](https://ocr-vqa.github.io/). Download: [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing). We save all files as `.jpg` - TextVQA: [TextVQA project page](https://textvqa.org/). Download: [trainvalimages](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip) - VisualGenome: [VisualGenome project page](https://homes.cs.washington.edu/~ranjay/visualgenome/index.html). Download: [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip) 2. Download relevant annotations - LLaVA's pretraining annotations: [blip_laion_cc_sbu_558k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) - LLaVA's SFT annotations: [llava_v1_5_mix665k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json) - ShareGPT4V's pretraining annotations: [share-captioner_coco_lcs_sam_1246k_1107.json](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/share-captioner_coco_lcs_sam_1246k_1107.json) - ShareGPT4V's SFT annotations: [sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json) ### Organize Data Organize the image files and annotation files as follows in `path/to/your/data`: ```none data ├── llava │ ├── llava_pretrain │ │ ├── images │ │ ├── blip_laion_cc_sbu_558k.json ├── coco │ ├── train2017 ├── sam │ ├── images ├── gqa │ ├── images ├── ocr_vqa │ ├── images ├── textvqa │ ├── train_images ├── vg │ ├── VG_100K │ ├── VG_100K_2 ├── share_textvqa │ ├── images ├── web-celebrity │ ├── images ├── web-landmark │ ├── images ├── wikiart │ ├── images ├── text_files │ ├── llava_v1_5_mix665k.json │ ├── share-captioner_coco_lcs_sam_1246k_1107.json │ ├── sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json ``` ## Train **This section we describe the base recipe.** ### Hyperparameters Both hyperparameters used in pretraining and finetuning are provided below. 1. Pretraining | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | |----------------| ---: | ---: | ---: |-----------:| ---: | | TinyLLaVA-3.1B | 256 | 1e-3 | 1 | 3072 | 0 | 2. Finetuning | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | |----------------| ---: | ---: | ---: |-----------:| ---: | | TinyLLaVA-3.1B | 128 | 2e-5 | 1 | 3072 | 0 | ### Pretrain **Replace paths to your paths** Training script with DeepSpeed ZeRO-2: [`pretrain.sh`](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/scripts/tiny_llava/pretrain.sh). ### Finetune **Replace paths to your paths** Training script with DeepSpeed ZeRO-3: [`finetune.sh`](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/scripts/tiny_llava/finetune.sh). ## Custom-Finetune Check out our custom finetune using LoRA [here](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/dev/docs/CUTOM_FINETUNE.md). ## ✏ Citation If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:. ```BibTeX @misc{zhou2024tinyllava, title={TinyLLaVA: A Framework of Small-scale Large Multimodal Models}, author={Baichuan Zhou and Ying Hu and Xi Weng and Junlong Jia and Jie Luo and Xien Liu and Ji Wu and Lei Huang}, year={2024}, eprint={2402.14289}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` ## ❤️ Community efforts * Our codebase is built upon the [LLaVA](https://github.com/haotian-liu/LLaVA) project. Great work! * Our project uses data from the [ShareGPT4V](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V) project. Great work!